题目内容
已知定义在R上的函数f(x)的图象关于点(-
,0)对称,且满足
,f(-1)=1,f(0)=-2,f(1)+f(2)+f(3)+…+f(2012)的值为
- A.-2
- B.-1
- C.1
- D.2
D
分析:确定函数是偶函数且为周期函数,从而可得f(1)+f(2)+f(3)=f(-1)+f(-1)+f(0)=0,利用周期性,即可求得结论.
解答:∵定义在R上的函数f(x)的图象关于点(-
,0)对称,
∴f(x)=-f(-x-
)
∵
∴
=f(-x-
)
∴f(x)=f(-x),∴函数f(x)为定义在R上的偶函数
∵
,∴
=
=f(x)
∴f(x)是一个以3为周期的周期函数
∴f(1)=f(-1),f(2)=f(2-3)=f(-1)
∵f(-1)=1,f(0)=-2,
∴f(1)+f(2)+f(3)=f(-1)+f(-1)+f(0)=0
∵2012=3×670+2
∴f(1)+f(2)+f(3)+…+f(2012)=f(1)+f(2)=2
故选D.
点评:本题考查函数的奇偶性,对称性、周期性,考查学生的计算能力,确定函数是偶函数且为周期函数是解题的关键.
分析:确定函数是偶函数且为周期函数,从而可得f(1)+f(2)+f(3)=f(-1)+f(-1)+f(0)=0,利用周期性,即可求得结论.
解答:∵定义在R上的函数f(x)的图象关于点(-
∴f(x)=-f(-x-
∵
∴
∴f(x)=f(-x),∴函数f(x)为定义在R上的偶函数
∵
∴f(x)是一个以3为周期的周期函数
∴f(1)=f(-1),f(2)=f(2-3)=f(-1)
∵f(-1)=1,f(0)=-2,
∴f(1)+f(2)+f(3)=f(-1)+f(-1)+f(0)=0
∵2012=3×670+2
∴f(1)+f(2)+f(3)+…+f(2012)=f(1)+f(2)=2
故选D.
点评:本题考查函数的奇偶性,对称性、周期性,考查学生的计算能力,确定函数是偶函数且为周期函数是解题的关键.
练习册系列答案
相关题目
已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=( )
| A、0 | B、2013 | C、3 | D、-2013 |