题目内容

已知函数f(x)=|log2|x-1||,且关于x的方程[f(x)]2+af(x)+b=0有6个不同的实数解,若最小实数解为-3,则a+b的值为( )
A.-3
B.-2
C.0
D.不能确定
【答案】分析:先作出函数f(x)=|log2|x-1||的图象,令t=f(x),方程[f(x)]2+af(x)+2b=0转化为:t2+at+2b=0,再方程[f(x)]2+af(x)+2b=0有6个不同的实数解,可知方程t2+at+2b=0有一零根和一正根,又因为最小的实数解为-3,所以f(-3)=1从而得到方程:t2+at+2b=0的两根是0和2,最后由韦达定理求得得:a,b进而求得a+b.
解答:解:作出函数f(x)=|log2|x-1||的图象
∵方程[f(x)]2+af(x)+2b=0有6个不同的实数解
∴如图所示:令t=f(x),
方程[f(x)]2+af(x)+2b=0转化为:t2+at+2b=0
则方程有一零根和一正根,
又∵最小的实数解为-3
∴f(-3)=1
∴方程:t2+at+2b=0的两根是0和2,
由韦达定理得:a=-2,b=0
∴a+b=-2
故选B
点评:本题主要考查函数与方程的综合运用,还考查了方程的根与函数零点的关系,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网