题目内容
(2012•泰安二模)已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=35,且a2,a7,a22成等比数列.
(I)求数列{an}的通项公式;
(II)设数列{
}的前n项和为Tn,求Tn.
(I)求数列{an}的通项公式;
(II)设数列{
| 1 | Sn |
分析:(I)设数列的首项为a1,利用S5=35,且a2,a7,a22成等比数列,等差数列{an}的公差d≠0,求得数列的首项与公差,即可求得数列{an}的通项公式;
(II)先求出Sn,再用裂项法,可求数列{
}的前n项和.
(II)先求出Sn,再用裂项法,可求数列{
| 1 |
| Sn |
解答:解:(I)设数列的首项为a1,则
∵S5=35,且a2,a7,a22成等比数列
∴
∵d≠0,∴d=2,a1=3
∴an=3+(n-1)×2=2n+1;
(II)Sn=
=n(n+2)
∴
=
=
(
-
)
∴Tn=
(1-
+
-
+
-
+…+
-
)=
(1+
-
-
)=
-
∵S5=35,且a2,a7,a22成等比数列
∴
|
∵d≠0,∴d=2,a1=3
∴an=3+(n-1)×2=2n+1;
(II)Sn=
| n(3+2n+1) |
| 2 |
∴
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
点评:本题考查等差数列的通项,考查数列的求和,正确求通项,利用裂项法求数列的和数关键.
练习册系列答案
相关题目