题目内容

(2012•泰安二模)已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=35,且a2,a7,a22成等比数列.
(I)求数列{an}的通项公式;
(II)设数列{
1Sn
}
的前n项和为Tn,求Tn
分析:(I)设数列的首项为a1,利用S5=35,且a2,a7,a22成等比数列,等差数列{an}的公差d≠0,求得数列的首项与公差,即可求得数列{an}的通项公式;
(II)先求出Sn,再用裂项法,可求数列{
1
Sn
}
的前n项和.
解答:解:(I)设数列的首项为a1,则
∵S5=35,且a2,a7,a22成等比数列
5a1+10d=35
(a1+6d)2=(a1+d)(a1+21d)

∵d≠0,∴d=2,a1=3
∴an=3+(n-1)×2=2n+1;
(II)Sn=
n(3+2n+1)
2
=n(n+2)

1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴Tn=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
=
3
4
-
2n+3
2(n+1)(n+2)
点评:本题考查等差数列的通项,考查数列的求和,正确求通项,利用裂项法求数列的和数关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网