题目内容

给出四个函数,分别满足①f(x+y)=f(x)+f(y),②g(x+y)=g(x)·g(y),③h(x·y)=h(x)+h(y),④m(x·y)=m(x)·m(y).又给出四个函数的图像,那么正确的匹配方案可以是 (  )

        

     甲            乙               丙              丁

A.①甲,②乙,③丙,④丁           B.①乙,②丙,③甲,④丁

C.①丙,②甲,③乙,④丁           D.①丁,②甲,③乙,④丙

 

【答案】

D

【解析】

试题分析::①f(x)=x,这个函数可使 f(x+y)=x+y=f(x)+f(y)成立,

∵f(x+y)=x+y,x+y=f(x)+f(y),∴f(x+y)=f(x)+f(y),自变量的和等于因变量的和.

正比例函数y=kx就有这个特点.故①-丁;②寻找一类函数g(x),使得g(x+y)=g(x)g(y),即自变量相加等于因变量乘积.指数函数y=ax(a>0,a≠1)具有这种性质:g(x)=ax,g(y)=ay,g(x+y)=ax+y=ax•ay=g(x)•g(y).故②-甲;③自变量的乘积等于因变量的和:与②相反,可知对数函数具有这种性质:

令:h(x)=logax,则h(xy)=loga(xy)=logax+logbx.故③-乙.④t(x)=x2,这个函数可使t(xy)=t(x)t(y)成立.∵t(x)=x2,∴t(xy)=(xy)2=x2y2=t(x)t(y),故④-丙.故选D.

考点:1.对数函数、指数函数的图像与性质;2.一次函数的性质与图象.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网