题目内容

已知数列{an}的前n项和为Sn,满足Sn+2n=2an
(1)证明:数列{an+2}是等比数列.并求数列{an}的通项公式an
(2)若数列{bn}满足bn=log2(an+2),设Tn是数列{
bn
an+2
}
的前n项和.求证:Tn
3
2
分析:(1)由Sn+2n=2an,知Sn=2an-2n.当n=1 时,S1=2a1-2,则a1=2,当n≥2时,Sn-1=2an-1-2(n-1),故an=2an-1+2,由此能够证明数列{an+2}是等比数列.并能求出数列{an}的通项公式an.
(2)由bn=log2(an+2)=log22n+1=n+1,得
bn
an+2
=
n+1
2n+1
,故Tn=
2
22
+
3
23
+…+
n+1
2n+1
,由此利用错位相减法能够求出Tn,并证明Tn
3
2
解答:证明:(1)由Sn+2n=2an得 Sn=2an-2n
当n∈N*时,Sn=2an-2n,①
当n=1 时,S1=2a1-2,则a1=2,
则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2)
an+2
an-1+2
=2

∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1
∴an=2n+1-2.
(2)证明:由bn=log2(an+2)=log22n+1=n+1,
bn
an+2
=
n+1
2n+1

Tn=
2
22
+
3
23
+…+
n+1
2n+1
,③
1
2
Tn=
2
23
 +
3
24
+…+
n
2n+1
+
n+1
2n+2
  ④
③-④,得
1
2
Tn=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=
1
4
+
1
4
(1-
1
2 n
)
1-
1
2
-
n+1
2n+2

=
1
4
+
1
2
-
1
2 n+1
-
n+1
2n+2

=
3
4
-
n+3
2n+2

所以 Tn=
3
2
-
n+3
2n+1
3
2
点评:本题考查等比数列的证明和求数列{an}的通项公式anTn
3
2
.解题时要认真审题,注意构造法和错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网