题目内容
若函f(x)=x2+ax+1(x∈R)是偶函数,则实数a=________.
0
分析:利用函数奇偶性的定义建立方程关系.
解答:因为f(x)=x2+ax+1(x∈R)是偶函数,所以f(-x)═f(x)
即x2-ax+1=x2+ax+1,所以ax=0,a=0.
故答案为:0.
点评:本题主要考查函数奇偶性的应用,利用函数奇偶性的定义是解决本题的关键.
分析:利用函数奇偶性的定义建立方程关系.
解答:因为f(x)=x2+ax+1(x∈R)是偶函数,所以f(-x)═f(x)
即x2-ax+1=x2+ax+1,所以ax=0,a=0.
故答案为:0.
点评:本题主要考查函数奇偶性的应用,利用函数奇偶性的定义是解决本题的关键.
练习册系列答案
相关题目