题目内容
设数列{an}满足a1=2,am+an+am-n=
(a2m+a2n)+m-n,其中m,n∈N,m≥n,数列{bn}满足:bn=an+1-an.
(I)求a0,a2;
(II)当n∈N*时,求证:数列{bn}为等差数列;
(III)设cn=
(n∈N*),令Sn=c1+c2+…+cn,求证:
-
<
+
+…+
<
(n∈N*).
| 1 |
| 2 |
(I)求a0,a2;
(II)当n∈N*时,求证:数列{bn}为等差数列;
(III)设cn=
| 2n-2(bn-2) |
| n |
| n |
| 2 |
| 1 |
| 3 |
| S1 |
| S2 |
| S2 |
| S3 |
| Sn |
| sn+1 |
| n |
| 2 |
分析:(I)根据数列递推式,利用赋值法,可得结论;
(II)根据数列递推式,令m=n+2,进而可得an+2=2an+1-an+2,由此可证数列{bn}为等差数列;
(III)确定数列的通项,求出数列的和,再进行放缩,即可证得结论.
(II)根据数列递推式,令m=n+2,进而可得an+2=2an+1-an+2,由此可证数列{bn}为等差数列;
(III)确定数列的通项,求出数列的和,再进行放缩,即可证得结论.
解答:(I)解:∵am+an+am-n=
(a2m+a2n)+m-n
∴令m=n,可得a0=0;令n=0,可得a2m=4am-2m
令m=1,可得a2=4a1-2=6;
(II)证明:令m=n+2,则a2n+2+an+a2-2=
(a2n+4+a2n)
∵a2m=4am-2m
∴a2n+1=4an+1-2(n+1),a2n+4=4an+2-2(n+2),a2n=4an-2n
∴an+2=2an+1-an+2
∴(an+2-an+1)-(an+1-an)=2
∵bn=an+1-an,
∴bn+1-bn=2
∴数列{bn}为首项为a2-a1=4,公差为2的等差数列;
(III)证明:由(II)知bn=2n+2
∴cn=
=2n-1
∴Sn=c1+c2+…+cn=2n-1
∴
=
<
=
∴
+
+…+
<
又∵
=
=
-
≥
-
×
∴
+
+…+
≥
-
(
+
+…+
)=
-
(1-
)>
-
∴
-
<
+
+…+
<
(n∈N*)
| 1 |
| 2 |
∴令m=n,可得a0=0;令n=0,可得a2m=4am-2m
令m=1,可得a2=4a1-2=6;
(II)证明:令m=n+2,则a2n+2+an+a2-2=
| 1 |
| 2 |
∵a2m=4am-2m
∴a2n+1=4an+1-2(n+1),a2n+4=4an+2-2(n+2),a2n=4an-2n
∴an+2=2an+1-an+2
∴(an+2-an+1)-(an+1-an)=2
∵bn=an+1-an,
∴bn+1-bn=2
∴数列{bn}为首项为a2-a1=4,公差为2的等差数列;
(III)证明:由(II)知bn=2n+2
∴cn=
| 2n-2(bn-2) |
| n |
∴Sn=c1+c2+…+cn=2n-1
∴
| Sn |
| Sn+1 |
| 2n-1 |
| 2n+1-1 |
| 2n+1-1 |
| 2(2n+1-1) |
| 1 |
| 2 |
∴
| S1 |
| S2 |
| S2 |
| S3 |
| Sn |
| Sn+1 |
| n |
| 2 |
又∵
| Sn |
| Sn+1 |
| 2n-1 |
| 2n+1-1 |
| 1 |
| 2 |
| 1 |
| 4×2n-2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
∴
| S1 |
| S2 |
| S2 |
| S3 |
| Sn |
| Sn+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
∴
| n |
| 2 |
| 1 |
| 3 |
| S1 |
| S2 |
| S2 |
| S3 |
| Sn |
| Sn+1 |
| n |
| 2 |
点评:本题考查数列递推式,考查等差数列的证明,考查数列的通项与求和,考查不等式的证明,正确确定数列的通项,利用放缩法是解题的关键.
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|