题目内容

设数列{an}满足a1=2,am+an+am-n=
1
2
(a2m+a2n)+m-n,其中m,n∈N,m≥n
,数列{bn}满足:bn=an+1-an
(I)求a0,a2
(II)当n∈N*时,求证:数列{bn}为等差数列;
(III)设cn=
2n-2(bn-2)
n
(n∈N*),令Sn=c1+c2+…+cn
,求证:
n
2
-
1
3
S1
S2
+
S2
S3
+…+
Sn
sn+1
n
2
(n∈N*)
分析:(I)根据数列递推式,利用赋值法,可得结论;
(II)根据数列递推式,令m=n+2,进而可得an+2=2an+1-an+2,由此可证数列{bn}为等差数列;
(III)确定数列的通项,求出数列的和,再进行放缩,即可证得结论.
解答:(I)解:∵am+an+am-n=
1
2
(a2m+a2n)+m-n

∴令m=n,可得a0=0;令n=0,可得a2m=4am-2m
令m=1,可得a2=4a1-2=6;
(II)证明:令m=n+2,则a2n+2+an+a2-2=
1
2
(a2n+4+a2n)

∵a2m=4am-2m
∴a2n+1=4an+1-2(n+1),a2n+4=4an+2-2(n+2),a2n=4an-2n
∴an+2=2an+1-an+2
∴(an+2-an+1)-(an+1-an)=2
∵bn=an+1-an
∴bn+1-bn=2
∴数列{bn}为首项为a2-a1=4,公差为2的等差数列;
(III)证明:由(II)知bn=2n+2
cn=
2n-2(bn-2)
n
=2n-1
Sn=c1+c2+…+cn=2n-1
Sn
Sn+1
=
2n-1
2n+1-1
2n+1-1
2(2n+1-1)
=
1
2

S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
2

又∵
Sn
Sn+1
=
2n-1
2n+1-1
=
1
2
-
1
2n-2
1
2
-
1
3
×
1
2n

S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
2
-
1
3
(
1
2
+
1
22
+…+
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3

n
2
-
1
3
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
2
(n∈N*)
点评:本题考查数列递推式,考查等差数列的证明,考查数列的通项与求和,考查不等式的证明,正确确定数列的通项,利用放缩法是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网