题目内容
已知函数f(x)=sinxcosx+
(cos2x-sin2x).
(Ⅰ)求f(
)的值;
(Ⅱ)求f(x)的最大值及单调递增区间.
| ||
| 2 |
(Ⅰ)求f(
| π |
| 6 |
(Ⅱ)求f(x)的最大值及单调递增区间.
(Ⅰ)f(x)=
sin2x+
cos2x(3分)
=sin(2x+
)2(5分)
所以f(
)=sin(2×
+
)=sin
=
.(7分)
(Ⅱ)当x=kπ+
(k∈Z)时,f(x)的最大值是1.(9分)
由-
+2kπ≤2x+
≤
+2kπ,k∈Z,
得-
+kπ≤x≤
+kπ,k∈Z.
所以f(x)的单调递增区间为[-
+kπ,
+kπ],k∈Z.(13分)
| 1 |
| 2 |
| ||
| 2 |
=sin(2x+
| π |
| 3 |
所以f(
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 2π |
| 3 |
| ||
| 2 |
(Ⅱ)当x=kπ+
| π |
| 12 |
由-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
得-
| 5π |
| 12 |
| π |
| 12 |
所以f(x)的单调递增区间为[-
| 5π |
| 12 |
| π |
| 12 |
练习册系列答案
相关题目