题目内容
已知函数f(x)=cos(ωx+
)+cos(ωx-
)-sinωx(ω>0,x∈R)的最小正周期为2π.
(I)求函数f(x)的对称轴方程;
(II)若f(θ)=
,求cos(
+2θ)的值.
| π |
| 6 |
| π |
| 6 |
(I)求函数f(x)的对称轴方程;
(II)若f(θ)=
| ||
| 3 |
| π |
| 3 |
(I)∵f(x)=cos(ωx+
)+cos(ωx-
)-sinωx
=cosωxcos
-sinωxsin
+cosωxcos
+sinωxsin
-sinωx
=
cosωx-sinωx=2cos(ωx+
).
函数f(x)=cos(ωx+
)+cos(ωx-
)-sinωx(ω>0,x∈R)的最小正周期等于2π,
∴
=2π,∴ω=1,可得f(x)=2cos( x+
).
由x+
=kπ+
,k∈z,求得对称轴方程为 x=kπ+
,k∈z.
(II)由 f(θ)=
,可得 cos(θ+
)=
,
∴cos(
+2θ)=2cos2(θ+
)-1=-
.
| π |
| 6 |
| π |
| 6 |
=cosωxcos
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| 3 |
| π |
| 6 |
函数f(x)=cos(ωx+
| π |
| 6 |
| π |
| 6 |
∴
| 2π |
| ω |
| π |
| 6 |
由x+
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
(II)由 f(θ)=
| ||
| 3 |
| π |
| 6 |
| ||
| 6 |
∴cos(
| π |
| 3 |
| π |
| 6 |
| 2 |
| 3 |
练习册系列答案
相关题目