ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
| PM |
| MF2 |
| MF2 |
£¨¢ñ£©ÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©Éè²»¹ýÔµãOµÄÖ±ÏßlÓë¹ì¼£C½»ÓÚA£¬BÁ½µã£¬ÈôÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Çó¡÷OABÃæ»ýµÄȡֵ·¶Î§£»
£¨¢ó£©ÓÉ£¨¢ò£©Çó½âµÄ½á¹û£¬ÊÔ¶ÔÍÖÔ²¦£Ð´³öÀàËÆµÄÃüÌ⣮£¨Ö»Ðèд³öÀàËÆµÄÃüÌ⣬²»±ØËµÃ÷ÀíÓÉ£©
·ÖÎö£º£¨¢ñ£©ÉèM£¨x£¬y£©Îª¹ì¼£CÉϵÄÈÎÒâÒ»µã£®·ÖÀàÌÖÂÛ£¬µ±|
|=0ʱ£¬µã£¨a£¬0£©ºÍµã£¨-a£¬0£©Ôڹ켣CÉÏ£¬µ±|
|¡Ù0ÇÒ|
|¡Ù0ʱ£¬ÓÉ
•
=0£¬µÃ
¡Í
£¬´Ó¶ø¿ÉÖµMΪÏß¶ÎF2QµÄÖе㣬½ø¶ø¿ÉÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»£¨¢ò£©ÓÉÌâÒâ¿ÉÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ
ÏûÈ¥y²¢ÕûÀí£¬ÀûÓÃΤ´ï¶¨Àí¼°Ö±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬¿ÉÇóÖ±Ïß·½³Ì£¬´Ó¶ø¿ÉÇó¡÷OABÃæ»ý£¬½ø¶ø¿ÉµÃ¡÷OABÃæ»ýµÄȡֵ·¶Î§£»
£¨¢ó£©¶ÔÍÖÔ²¦£¶øÑÔ£¬ÓÐÈçÏÂÀàËÆµÄÃüÌ⣺¡°Éè²»¹ýÔµãOµÄÖ±ÏßlÓëÍÖÔ²¦£½»ÓÚA£¬BÁ½µã£¬ÈôÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Ôò¡÷OABÃæ»ýµÄȡֵ·¶Î§Îª£¨0£¬
ab£©£®¡±
| PM |
| PM |
| MF2 |
| PM |
| MF2 |
| PM |
| MF2 |
ÓÉ
|
£¨¢ó£©¶ÔÍÖÔ²¦£¶øÑÔ£¬ÓÐÈçÏÂÀàËÆµÄÃüÌ⣺¡°Éè²»¹ýÔµãOµÄÖ±ÏßlÓëÍÖÔ²¦£½»ÓÚA£¬BÁ½µã£¬ÈôÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Ôò¡÷OABÃæ»ýµÄȡֵ·¶Î§Îª£¨0£¬
| 1 |
| 2 |
½â´ð£º
½â£º£¨¢ñ£©ÉèM£¨x£¬y£©Îª¹ì¼£CÉϵÄÈÎÒâÒ»µã£®
µ±|
|=0ʱ£¬µã£¨a£¬0£©ºÍµã£¨-a£¬0£©Ôڹ켣CÉÏ£®
µ±|
|¡Ù0ÇÒ|
|¡Ù0ʱ£¬ÓÉ
•
=0£¬µÃ
¡Í
£®
ÓÖ|
|=|
|£¨Èçͼ£©£¬ËùÒÔMΪÏß¶ÎF2QµÄÖе㣮
ÔÚ¡÷QF1F2ÖУ¬|
|=
|F1Q|=a£¬ËùÒÔÓÐx2+y2=a2£®
×ÛÉÏËùÊö£¬µãMµÄ¹ì¼£CµÄ·½³ÌÊÇx2+y2=a2£®¡£¨4·Ö£©
£¨¢ò£©ÓÉÌâÒâ¿ÉÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬
¹Ê¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ
ÏûÈ¥y²¢ÕûÀí£¬µÃ
£¨1+k2£©x2+2kmx+m2-a2=0£¬
Ôò¡÷=4k2m2-4£¨1+k2£©£¨m2-a2£©=4£¨k2a2+a2-m2£©£¾0£¬
ÇÒx1+x2=
£¬x1x2=
£®
¡ày1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2£®
¡ßÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬
¡à
•
=
=k2£¬
¼´
+m2=0£¬ÓÖm¡Ù0£¬
¡àk2=1£¬¼´k=¡À1£®
ÉèµãOµ½Ö±ÏßlµÄ¾àÀëΪd£¬Ôòd=
£¬
¡àS¡÷OAB=
|AB|d=
|x1-x2|•
=
|x1-x2||m|=
£®
ÓÉÖ±ÏßOA£¬OBµÄбÂÊ´æÔÚ£¬ÇÒ¡÷£¾0£¬µÃ0£¼m2£¼2a2ÇÒm2¡Ùa2£¬
¡à0£¼
£¼
=a2£®
¹Ê¡÷OABÃæ»ýµÄȡֵ·¶Î§Îª£¨0£¬
a2£©£®¡£¨10·Ö£©
£¨¢ó£©¶ÔÍÖÔ²¦£¶øÑÔ£¬ÓÐÈçÏÂÀàËÆµÄÃüÌ⣺¡°Éè²»¹ýÔµãOµÄÖ±ÏßlÓëÍÖÔ²¦£½»ÓÚA£¬BÁ½µã£¬ÈôÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Ôò¡÷OABÃæ»ýµÄȡֵ·¶Î§Îª£¨0£¬
ab£©£®¡±¡£¨13·Ö£©
µ±|
| PM |
µ±|
| PM |
| MF2 |
| PM |
| MF2 |
| PM |
| MF2 |
ÓÖ|
| PQ |
| PF2 |
ÔÚ¡÷QF1F2ÖУ¬|
| OM |
| 1 |
| 2 |
×ÛÉÏËùÊö£¬µãMµÄ¹ì¼£CµÄ·½³ÌÊÇx2+y2=a2£®¡£¨4·Ö£©
£¨¢ò£©ÓÉÌâÒâ¿ÉÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»Îª0£¬
¹Ê¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¨m¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ
|
£¨1+k2£©x2+2kmx+m2-a2=0£¬
Ôò¡÷=4k2m2-4£¨1+k2£©£¨m2-a2£©=4£¨k2a2+a2-m2£©£¾0£¬
ÇÒx1+x2=
| -2km |
| 1+k2 |
| m2-a2 |
| 1+k2 |
¡ày1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2£®
¡ßÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬
¡à
| y1 |
| x1 |
| y2 |
| x2 |
| k2x1x2+km(x1+x2)+m2 |
| x1x2 |
¼´
| -2k2m2 |
| 1+k2 |
¡àk2=1£¬¼´k=¡À1£®
ÉèµãOµ½Ö±ÏßlµÄ¾àÀëΪd£¬Ôòd=
| |m| | ||
|
¡àS¡÷OAB=
| 1 |
| 2 |
| 1 |
| 2 |
| 1+k2 |
| |m| | ||
|
=
| 1 |
| 2 |
| 1 |
| 2 |
| m2(2a2-m2) |
ÓÉÖ±ÏßOA£¬OBµÄбÂÊ´æÔÚ£¬ÇÒ¡÷£¾0£¬µÃ0£¼m2£¼2a2ÇÒm2¡Ùa2£¬
¡à0£¼
| m2(2a2-m2) |
| m2+(2a2-m2) |
| 2 |
¹Ê¡÷OABÃæ»ýµÄȡֵ·¶Î§Îª£¨0£¬
| 1 |
| 2 |
£¨¢ó£©¶ÔÍÖÔ²¦£¶øÑÔ£¬ÓÐÈçÏÂÀàËÆµÄÃüÌ⣺¡°Éè²»¹ýÔµãOµÄÖ±ÏßlÓëÍÖÔ²¦£½»ÓÚA£¬BÁ½µã£¬ÈôÖ±ÏßOA£¬AB£¬OBµÄбÂÊÒÀ´Î³ÉµÈ±ÈÊýÁУ¬Ôò¡÷OABÃæ»ýµÄȡֵ·¶Î§Îª£¨0£¬
| 1 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éÇóÈý½ÇÐεÄÃæ»ý£¬¿¼²éÀà±È˼Ï룬½âÌâµÄ¹Ø¼üÊÇÍÚ¾òÒþº¬Ìõ¼þ£¬ÕýÈ·±íʾÈý½ÇÐεÄÃæ»ý£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿