题目内容
已知数列{an}满足a1=1,a2=2,
=
(n∈N*),则a200=( )
| an+1+an |
| an |
| an+2-an+1 |
| an+1 |
分析:由数列{an}满足a1=1,a2=2,
=
(n∈N*),知
-
=2,故
=2+2(n-1)=2n,由此能导出an=(n-1)!•2n-1,从而能求出a200.
| an+1+an |
| an |
| an+2-an+1 |
| an+1 |
| an+2 |
| an+1 |
| an+1 |
| an |
| an+1 |
| an |
解答:解:数列{an}满足a1=1,a2=2,
=
(n∈N*),
∴
+1=
-1,
∴
-
=2,
{
}为等差数列,公差d=2,
=2+2(n-1)=2n,
当n≥2时,
=2,
=4,
=6,
=8,
…
=2(n-1),
∴
=2×4×6×…×2(n-1)
=2n-1×(n-1)!
∴an=(n-1)!•2n-1,
∴a200=2199•199!.
故选A.
| an+1+an |
| an |
| an+2-an+1 |
| an+1 |
∴
| an+1 |
| an |
| an+2 |
| an+1 |
∴
| an+2 |
| an+1 |
| an+1 |
| an |
{
| an+1 |
| an |
| an+1 |
| an |
当n≥2时,
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| a5 |
| a4 |
…
| an |
| an-1 |
∴
| an |
| a1 |
=2n-1×(n-1)!
∴an=(n-1)!•2n-1,
∴a200=2199•199!.
故选A.
点评:本题考查数列的递推式的应用,考查运算求解能力,考查推导论证能力,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目