题目内容
已知数列{an}的各项均为正值,a1=1,对任意n∈N*,an+12-1=4an(an+1),bn=log2(an+1)都成立.
(1)求数列{an}、{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Tn;
(3)当k>7且k∈N*时,证明对任意n∈N*,都有
+
+
+…+
>
成立.
(1)求数列{an}、{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Tn;
(3)当k>7且k∈N*时,证明对任意n∈N*,都有
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+2 |
| 1 |
| bnk-1 |
| 3 |
| 2 |
(1)由n∈N*,
-1=4an(an+1),得(an+1+2an+1)(an+1-2an-1)=0
∵数列{an}的各项均为正值,an+1+2an+1>0,∴an+1=2an+1,整理为an+1+1=2(an+1)
又a1+1=2≠0∴数列{an+1}为等比数列,
∴an+1=(a1+1)•2n-1=2n∴数列{an}的通项公式an=2n-1,
数列{bn}的通项公式bn=log2(2n-1+1)=n.
(2)由(1)cn=an•bn=n•(2n-1)
所以Tn=1•21+2•22+3•23+…+n•2n-(1+2+3+…+n)
令Tn′=1•21+2•22+3•23+…+n•2n①
则2Tn′=1•22+2•23+3•24+…+n•2n+1②
①-②得-Tn′=1•21+22+23+24+…++2n-n•2n+1=2n+1-2-n•2n+1=(1-n)2n+1-2
(3)法1:设S=
+
+
+…+
=
+
+
+…+
∴2S=(
+
)+(
+
)+(
+
)+…+(
+
)
当x>0,y>0时,x+y≥2
,
+
≥2
,
∴(x+y)(
+
)≥4∴
+
≥
当且仅当x=y时等号成立.
∴上述(1)式中,k>7,n>0,n+1,n+2,…,nk-1全为正,
∴2S>
+
+
+…+
=
∴S>
>
=2(1-
)>2(1-
)=
法2∵k≥8,S≥
+
+…+
=
+…+
+
+…+
+
+…+
+…+
>
+…+
+
+…+
+
+…+
+…+
+…+
=
+
+
+…+
>
+
+
+
+
+
+
=1+
+
+
+
=1+
+
>1+
=
| a | 2n+1 |
∵数列{an}的各项均为正值,an+1+2an+1>0,∴an+1=2an+1,整理为an+1+1=2(an+1)
又a1+1=2≠0∴数列{an+1}为等比数列,
∴an+1=(a1+1)•2n-1=2n∴数列{an}的通项公式an=2n-1,
数列{bn}的通项公式bn=log2(2n-1+1)=n.
(2)由(1)cn=an•bn=n•(2n-1)
所以Tn=1•21+2•22+3•23+…+n•2n-(1+2+3+…+n)
令Tn′=1•21+2•22+3•23+…+n•2n①
则2Tn′=1•22+2•23+3•24+…+n•2n+1②
①-②得-Tn′=1•21+22+23+24+…++2n-n•2n+1=2n+1-2-n•2n+1=(1-n)2n+1-2
(3)法1:设S=
| 1 |
| bn |
| 1 |
| bn+1 |
| 1 |
| bn+2 |
| 1 |
| bnk-1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| nk-1 |
∴2S=(
| 1 |
| n |
| 1 |
| nk-1 |
| 1 |
| n+1 |
| 1 |
| nk-2 |
| 1 |
| n+2 |
| 1 |
| nk-3 |
| 1 |
| nk-1 |
| 1 |
| n |
当x>0,y>0时,x+y≥2
| xy |
| 1 |
| x |
| 1 |
| y |
|
∴(x+y)(
| 1 |
| x |
| 1 |
| y |
| 1 |
| x |
| 1 |
| y |
| 4 |
| x+y |
∴上述(1)式中,k>7,n>0,n+1,n+2,…,nk-1全为正,
∴2S>
| 4 |
| n+nk-1 |
| 4 |
| n+1+nk-2 |
| 4 |
| n+2+nk-3 |
| 4 |
| nk-1+n |
| 4n(k-1) |
| n+nk-1 |
∴S>
| 2(k-1) | ||
1+k-
|
| 2(k-1) |
| k+1 |
| 2 |
| k+1 |
| 2 |
| 7+1 |
| 3 |
| 2 |
法2∵k≥8,S≥
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 8n-1 |
=
| 1 |
| n |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 4n-1 |
| 1 |
| 8n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 3n-1 |
| 1 |
| 3n-1 |
| 1 |
| 4n-1 |
| 1 |
| 4n-1 |
| 1 |
| 8n-1 |
| 1 |
| 8n-1 |
=
| n |
| 2n-1 |
| n |
| 3n-1 |
| n |
| 4n-1 |
| n |
| 8n-1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 8 |
=1+
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 8 |
| 83 |
| 140 |
| 1 |
| 8 |
| 1 |
| 2 |
| 3 |
| 2 |
练习册系列答案
相关题目