题目内容
已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.
(Ⅰ)求an及Sn;
(Ⅱ)令bn=
(n∈N*),求数列{bn}的前n项和Tn.
友情提醒:形如{
}的求和,可使用裂项相消法如:
+
+
+…+
=
{(1-
)+(
-
)+(
-
)+…+(
-
)}=
.
(Ⅰ)求an及Sn;
(Ⅱ)令bn=
| 1 |
| an2-1 |
友情提醒:形如{
| 1 |
| 等差×等差 |
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 99×100 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 99 |
| 1 |
| 100 |
| 99 |
| 200 |
分析:(I)设等差数列{an}的公差为d,由于a3=7,a5+a7=26,可得
,解得a1,d,再利用通项公式和前n项和公式即可得出.
(Ⅱ)由(Ⅰ)知an=2n+1,利用“裂项求和”即可得出.
|
(Ⅱ)由(Ⅰ)知an=2n+1,利用“裂项求和”即可得出.
解答:解:(Ⅰ)设等差数列{an}的公差为d,
∵a3=7,a5+a7=26,
∴
,解得a1=3,d=2,
∴an=3+2(n-1)=2n+1;
Sn=3n+
×2=n2+2n.
(Ⅱ)由(Ⅰ)知an=2n+1,
∴bn=
=
=
•
=
•(
-
),
∴Tn=
•(1-
+
-
+…+
-
)=
•(1-
)=
,
即数列{bn}的前n项和Tn=
.
∵a3=7,a5+a7=26,
∴
|
∴an=3+2(n-1)=2n+1;
Sn=3n+
| n(n-1) |
| 2 |
(Ⅱ)由(Ⅰ)知an=2n+1,
∴bn=
| 1 |
| an2-1 |
| 1 |
| (2n+1)2-1 |
| 1 |
| 4 |
| 1 |
| n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| n |
| 4(n+1) |
即数列{bn}的前n项和Tn=
| n |
| 4(n+1) |
点评:本题考查了等差数列通项公式和前n项和公式、“裂项求和”等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关题目