题目内容

函数f(x)=cosx(sinx+cosx)(x∈R)的最小正周期是
π
π
分析:把函数解析式利用单项式乘以多项式的法则计算,然后分别利用二倍角的正弦及余弦函数公式化简,再利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式T=
|ω|
即可求出函数的最小正周期.
解答:解:f(x)=cosx(sinx+cosx)
=cosxsinx+cos2x
=
1
2
sin2x+
1
2
(cos2x+1)
=
2
2
sin(2x+
π
4
)+
1
2

∵ω=2,∴T=
2
=π.
故答案为:π
点评:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,其中利用三角函数的恒等变形把函数解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网