ÌâÄ¿ÄÚÈÝ
5£®²»µÈʽ×é$\left\{\begin{array}{l}{y¡Ý0}\\{x+y¡Ü0}\\{x-y+2¡Ý0}\end{array}\right.$µÄ½â¼¯ÎªD£¬ÓÐÏÂÁÐÃüÌ⣬¢Ù?£¨x£¬y£©¡ÊD£¬x+y+2£¼0£»¢Ú?£¨x£¬y£©¡ÊD£¬$\frac{y-1}{x-1}$¡Ü1£»
¢Û?£¨x£¬y£©¡ÊD£¬£¨x+2£©2+£¨y+1£©2£¼$\frac{1}{2}$£»¢Ü?£¨x£¬y£©¡ÊD£¬£¨x+1£©2+y2¡Ü1£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
·ÖÎö ×÷³ö²»µÈʽ×é±íʾµÄÇøÓòD£¬¶ÔËĸöÑ¡ÏîÖðÒ»·ÖÎö¼´¿É£®
½â´ð ½â£º»³öÂú×ãÌõ¼þµÄÆ½ÃæÇøÓò£¬Èçͼʾ£º
£¬
¢ÙÀ¶É«ÐéÏßºÍÆ½ÃæÇøÓòÎÞ½»µã£¬¹Ê²»?£¨x£¬y£©¡ÊD£¬x+y+2£¼0£¬¢Ù´íÎó£»
¢Ú$\frac{y-1}{x-1}$µÄ¼¸ºÎÒâÒå±íʾ¹ý£¨1£¬1£©ºÍÆ½ÃæÇøÓòÄڵĵãµÄбÂÊ£¬
¶øÐ±ÂÊkµÄ·¶Î§ÊÇ[0£¬1]£¬¹Ê¢ÚÕýÈ·£»
¢Û£¨x+2£©2+£¨y+1£©2£¼$\frac{1}{2}$±íʾԲÐÄΪ£¨-2£¬-1£©£¬°ë¾¶Îª$\frac{\sqrt{2}}{2}$µÄÔ²µÄÄÚ²¿£¬£¨¼û»ÆÉ«Ô²£©£¬
ÏÔÈ»ºÍÆ½ÃæÇøÓòÎÞ¹«¹²²¿·Ö£¬¹Ê²»?£¨x£¬y£©¡ÊD£¬£¨x+2£©2+£¨y+1£©2£¼$\frac{1}{2}$£¬¢Û´íÎó£»
¢Ü£¨x+1£©2+y2¡Ü1±íʾԲÐÄΪ£¨-1£¬1£©£¬°ë¾¶Îª1µÄÔ²¼°ÆäÄÚ²¿£¬£¨¼ûÂÌɫԲ£©£¬¹Ê¢ÜÕýÈ·£»
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Óã¬×ÅÖØ¿¼²é×÷ͼÄÜÁ¦£¬ÊìÁ·×÷ͼ£¬ÕýÈ··ÖÎöÊǹؼü£¬±¾ÌâÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÒÑÖªÖ±Ïß2x-y+1=0Óëµã£¨1£¬-2£©ÎªÔ²ÐĵÄÔ²ÏཻÓÚA£¬BÁ½µã£¬ÇÒ|AB|=4£¬Ôò´ËÔ²µÄ±ê×¼·½³ÌÊÇ£¨¡¡¡¡£©
| A£® | £¨x-1£©2+£¨y+2£©2=16 | B£® | £¨x-1£©2+£¨y+2£©2=9 | C£® | £¨x+1£©2+£¨y-2£©2=9 | D£® | £¨x+1£©2+£¨y+2£©2=16 |