题目内容

在△ABC中,角A,B,C对应的边分别为a,b,c,a=
5
,b=3,sinC=2sinA

(Ⅰ)求c的值;
(Ⅱ)求sin(2A-
π
4
)
的值.
(I)在△ABC中,根据正弦定理
c
sinC
=
a
sinA
,a=
5
,b=3,sinC=2sinA,
∴c=
asinC
sinA
=2a=2
5

(II)在△ABC中,根据余弦定理,得cosA=
c2+b2-a2
2bc
=
20+9-5
12
5
=
2
5
=
2
5
5

∴sinA=
1-cos2A
=
5
5

∴sin2A=2sinAcosA=
4
5
,cos2A=cos2A-sin2A=
3
5

则sin(2A-
π
4
)=sin2Acos
π
4
-cos2Asin
π
4
=
2
10
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网