题目内容
已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)•g(bn)=f(
)(n∈N*).
(I)求an并证明数列{bn-1}是等比数列;
(II)若数列{cn}满足cn=
,证明:c1+c2+c3+…+cn<3.
| b | n |
(I)求an并证明数列{bn-1}是等比数列;
(II)若数列{cn}满足cn=
| an |
| 4n-1•(bn-1) |
(I)因为点(an+1,S2n-1)在函数f(x)的图象上,所以an2=S2n-1,
令n=1,n=2,可得a12=S1,a22=S3,
∴a12=a1,(a1+d)2=3a1+3d
∴a1=1,d=2(d=-1舍去)
∴an=2n-1;
∵(bn-bn+1)•g(bn)=f(
)(n∈N*)
∴4(bn-bn+1)•(bn-1)=(bn-1)2(n∈N*)
∴
=
∴数列{bn-1}是以1为首项,
为公比的等比数列;
(II)证明:由上知bn-1=(
)n-1
∴cn=
=
令Tn=c1+c2+c3+…+cn,
则Tn=
+
+…+
①
∴
Tn=
+
+…+
+
②
①-②得
Tn=
+
+
+…+
-
2-
∴Tn=3-
<3
即c1+c2+c3+…+cn<3.
令n=1,n=2,可得a12=S1,a22=S3,
∴a12=a1,(a1+d)2=3a1+3d
∴a1=1,d=2(d=-1舍去)
∴an=2n-1;
∵(bn-bn+1)•g(bn)=f(
| b | n |
∴4(bn-bn+1)•(bn-1)=(bn-1)2(n∈N*)
∴
| bn+1-1 |
| bn-1 |
| 3 |
| 4 |
∴数列{bn-1}是以1为首项,
| 3 |
| 4 |
(II)证明:由上知bn-1=(
| 3 |
| 4 |
∴cn=
| an |
| 4n-1•(bn-1) |
| 2n-1 |
| 3n-1 |
令Tn=c1+c2+c3+…+cn,
则Tn=
| 1 |
| 30 |
| 3 |
| 31 |
| 2n-1 |
| 3n-1 |
∴
| 1 |
| 3 |
| 1 |
| 31 |
| 3 |
| 32 |
| 2n-3 |
| 3n-1 |
| 2n-1 |
| 3n |
①-②得
| 2 |
| 3 |
| 1 |
| 30 |
| 2 |
| 31 |
| 2 |
| 32 |
| 2 |
| 3n-1 |
| 2n-1 |
| 3n |
| 2(n+1) |
| 3n |
∴Tn=3-
| n+1 |
| 3n-1 |
即c1+c2+c3+…+cn<3.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|