题目内容
已知函数f(x)=
x3+
x2-2ax-3.
(Ⅰ)当a=1时,求函数f(x)在[-2,0]上的最小值;
(Ⅱ)求f(x)的单调增区间.
| 1 |
| 3 |
| a-2 |
| 2 |
(Ⅰ)当a=1时,求函数f(x)在[-2,0]上的最小值;
(Ⅱ)求f(x)的单调增区间.
(Ⅰ)a=1时,函数解析式为f(x)=
| 1 |
| 3 |
| 1 |
| 2 |
f′(x)=x2-x-2=(x+1)(x-2)
令f′(x)>0,得(x+1)(x-2)>0,解得x<-1或x>2.
同样,令f′(x)<0,得(x+1)(x-2)<0,解得-1<x<2.
所以f(x)在(-∞,-1)上为增函数.在(-1,2)上为减函数.在(2,+∝)上为增函数.
故f(x)在[-2,0]上的最小值是f(-2)与f(0)中的较小者.
f(-2)=-
| 8 |
| 3 |
所以f(x)在[-2,0]上的最小值为f(-2)=-
| 11 |
| 3 |
(Ⅱ)f′(x)=x2+(a-2)x-2a=(x+a)(x-2)
令f′(x)>0,即(x+a)(x-2)>0. ①
当-a>2时,即a<-2,不等式①的解为x<2或x>-a,
所以f(x)的单调增区间是(-∞,2)和(-a,+∝);
当-a<2时,即a>-2,不等式①的解为x<-a或x>2,
所以f(x)的单调增区间是(-∝,-a)和(2,+∞);
当-a=2时,即a=-2,不等式①的解为x∈R,且x≠2,由f(x)在x=2处连续所以f(x)的单调增区间是实数集R.
综上:
(1)当a<-2时,f(x)的单调增区间是(-∞,2)和(-a,+∞);
(2)当a>-2时,f(x)的单调增区间是(-∞,-a)和(2,+∞);
(3)当a=-2时,f(x)在实数集R上的单调递增.
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
| 1 |
| |x| |
| x+|x| |
| 2 |
| A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|