题目内容
已知数列{an}的通项公式为an=2n-1
(1)求证:{an}是等差数列;
(2)求{an}的前n项和Sn
(3)设bn=
,试求
+
+…+
.
(1)求证:{an}是等差数列;
(2)求{an}的前n项和Sn
(3)设bn=
| Sn |
| n |
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bn-1bn |
分析:(1)利用定义只要证明当n≥2时,an-an-1为常数即可.
(2)由等差数列的前n项和公式Sn=
求出即可.
(3)因为bn=n,所以由
=
-
裂项求和即可.
(2)由等差数列的前n项和公式Sn=
| n(a1+an) |
| 2 |
(3)因为bn=n,所以由
| 1 |
| i(i+1) |
| 1 |
| i |
| 1 |
| i+1 |
解答:解:(1)a1=2×1-1=1;当n≥2时,an-an-1=2n-1-[2(n-1)-1]=2为常数,∴数列{an}是以a1=2×1-1=1为首项,2为公差的等差数列.
(2)根据等差数列的前n项和公式得Sn=
=n2.
(3)∵bn=
=
=n,∴
=
=
-
,
∴
+
+…+
=(
-
)+(
-
)+…+(
-
)=1-
=
.
(2)根据等差数列的前n项和公式得Sn=
| n(1+2n-1) |
| 2 |
(3)∵bn=
| Sn |
| n |
| n2 |
| n |
| 1 |
| bibi+1 |
| 1 |
| i(i+1) |
| 1 |
| i |
| 1 |
| i+1 |
∴
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bn-1bn |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| n-1 |
| n |
点评:本题考查了等差数列的定义、通项公式、前n项和公式及裂项求和,理解和掌握以上公式和方法是解决问题的关键.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|