题目内容

(2012•广州二模)已知数列{an}的前n项和为Sn,对任意n∈N*,都有an>0且Sn=
(an-1)(an+2)
2
,令bn=
lnan+1
lnan

(1)求数列{an}的通项公式;
(2)使乘积b1•b2…bk为整数的k(k∈N*)叫“龙数”,求区间[1,2012]内的所有“龙数”之和;
(3)判断bn与bn+1的大小关系,并说明理由.
分析:(1)Sn=
(an-1)(an+2)
2
=
an2+an-2
2
,当n=1时,a1=S1=
a12+a1-2
2
,即a12-a1-2=0,解得a1=2,或a1=-1,由an>0,知a1=2.当n≥2时,an=Sn-Sn-1=
an2+an-2
2
-
an-12+an-1-2
2
,化简,得(an+an-1)(an-an-1-1)=0,由an>0,知an-an-1=1,由此能求出数列{an}的通项公式.
(2)由bn=
lnan+1
lnan
=
ln(n+2)
ln(n+1)
,知b1•b2…bk=
ln3
ln2
×
ln4
ln3
×…×
ln(k+2)
ln(k+1)
=
ln(k+2)
ln2
=log2(k+2),令log2(k+2)=m,则k=2m-2,m∈Z,由1≤2m-2≤2012,得3≤2m≤2014,故m=2,3,4,5,…,10.由此能求出区间[1,2012]内的所有“龙数”之和.
(3)由bn=
ln(n+2)
ln(n+1)
ln(n+1)
ln(n+1)
=1
,知
bn+1
bn
=
ln(n+3)
ln(n+2)
ln(n+2)
ln(n+1)
=
ln(n+3)•ln(n+1)
[ln(n+2)]2
[
ln(n+3)+ln(n+1)
2
]2
[ln(n+2)]2
<1,故bn>bn+1
解答:解:(1)∵Sn=
(an-1)(an+2)
2
=
an2+an-2
2

当n=1时,a1=S1=
a12+a1-2
2
,即a12-a1-2=0
解得a1=2,或a1=-1,
∵an>0,∴a1=2.
当n≥2时,an=Sn-Sn-1=
an2+an-2
2
-
an-12+an-1-2
2

化简,得an2-an-12-an-an-1=0
∴(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
∴{an}是首项为2,公差为1的等差数列,
∴an=2+(n-1)=n+1.
(2)∵bn=
lnan+1
lnan
=
ln(n+2)
ln(n+1)

∴b1•b2…bk=
ln3
ln2
×
ln4
ln3
×…×
ln(k+2)
ln(k+1)
=
ln(k+2)
ln2
=log2(k+2),
令log2(k+2)=m,则k=2m-2,m∈Z,
由1≤2m-2≤2012,得3≤2m≤2014,
∴m=2,3,4,5,…,10.
∴在区间[1,2012]内,k的值为22-2,23-2,…,210-2,
其和为:(22-2)+(23-2)+…+(210-2)
=(22+23+…+210)-2×9
=
22(1-29)
1-2
-18=2026.
(3)∵bn=
ln(n+2)
ln(n+1)
ln(n+1)
ln(n+1)
=1

bn+1
bn
=
ln(n+3)
ln(n+2)
ln(n+2)
ln(n+1)

=
ln(n+3)•ln(n+1)
[ln(n+2)]2

[
ln(n+3)+ln(n+1)
2
]2
[ln(n+2)]2

=
[ln(n+3)(n+1)]2
4[ln(n+2)]2

[ln(
n+3+n+1
2
)2]2
4[ln(n+2)]2
=1,
∴bn>bn+1
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网