题目内容
(2012•广州二模)已知数列{an}的前n项和为Sn,对任意n∈N*,都有an>0且Sn=
,令bn=
.
(1)求数列{an}的通项公式;
(2)使乘积b1•b2…bk为整数的k(k∈N*)叫“龙数”,求区间[1,2012]内的所有“龙数”之和;
(3)判断bn与bn+1的大小关系,并说明理由.
| (an-1)(an+2) |
| 2 |
| lnan+1 |
| lnan |
(1)求数列{an}的通项公式;
(2)使乘积b1•b2…bk为整数的k(k∈N*)叫“龙数”,求区间[1,2012]内的所有“龙数”之和;
(3)判断bn与bn+1的大小关系,并说明理由.
分析:(1)Sn=
=
,当n=1时,a1=S1=
,即a12-a1-2=0,解得a1=2,或a1=-1,由an>0,知a1=2.当n≥2时,an=Sn-Sn-1=
-
,化简,得(an+an-1)(an-an-1-1)=0,由an>0,知an-an-1=1,由此能求出数列{an}的通项公式.
(2)由bn=
=
,知b1•b2…bk=
×
×…×
=
=log2(k+2),令log2(k+2)=m,则k=2m-2,m∈Z,由1≤2m-2≤2012,得3≤2m≤2014,故m=2,3,4,5,…,10.由此能求出区间[1,2012]内的所有“龙数”之和.
(3)由bn=
>
=1,知
=
=
<
<1,故bn>bn+1.
| (an-1)(an+2) |
| 2 |
| an2+an-2 |
| 2 |
| a12+a1-2 |
| 2 |
| an2+an-2 |
| 2 |
| an-12+an-1-2 |
| 2 |
(2)由bn=
| lnan+1 |
| lnan |
| ln(n+2) |
| ln(n+1) |
| ln3 |
| ln2 |
| ln4 |
| ln3 |
| ln(k+2) |
| ln(k+1) |
| ln(k+2) |
| ln2 |
(3)由bn=
| ln(n+2) |
| ln(n+1) |
| ln(n+1) |
| ln(n+1) |
| bn+1 |
| bn |
| ||
|
| ln(n+3)•ln(n+1) |
| [ln(n+2)]2 |
[
| ||
| [ln(n+2)]2 |
解答:解:(1)∵Sn=
=
,
当n=1时,a1=S1=
,即a12-a1-2=0,
解得a1=2,或a1=-1,
∵an>0,∴a1=2.
当n≥2时,an=Sn-Sn-1=
-
,
化简,得an2-an-12-an-an-1=0,
∴(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
∴{an}是首项为2,公差为1的等差数列,
∴an=2+(n-1)=n+1.
(2)∵bn=
=
,
∴b1•b2…bk=
×
×…×
=
=log2(k+2),
令log2(k+2)=m,则k=2m-2,m∈Z,
由1≤2m-2≤2012,得3≤2m≤2014,
∴m=2,3,4,5,…,10.
∴在区间[1,2012]内,k的值为22-2,23-2,…,210-2,
其和为:(22-2)+(23-2)+…+(210-2)
=(22+23+…+210)-2×9
=
-18=2026.
(3)∵bn=
>
=1,
∴
=
=
<
=
<
=1,
∴bn>bn+1.
| (an-1)(an+2) |
| 2 |
| an2+an-2 |
| 2 |
当n=1时,a1=S1=
| a12+a1-2 |
| 2 |
解得a1=2,或a1=-1,
∵an>0,∴a1=2.
当n≥2时,an=Sn-Sn-1=
| an2+an-2 |
| 2 |
| an-12+an-1-2 |
| 2 |
化简,得an2-an-12-an-an-1=0,
∴(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
∴{an}是首项为2,公差为1的等差数列,
∴an=2+(n-1)=n+1.
(2)∵bn=
| lnan+1 |
| lnan |
| ln(n+2) |
| ln(n+1) |
∴b1•b2…bk=
| ln3 |
| ln2 |
| ln4 |
| ln3 |
| ln(k+2) |
| ln(k+1) |
| ln(k+2) |
| ln2 |
令log2(k+2)=m,则k=2m-2,m∈Z,
由1≤2m-2≤2012,得3≤2m≤2014,
∴m=2,3,4,5,…,10.
∴在区间[1,2012]内,k的值为22-2,23-2,…,210-2,
其和为:(22-2)+(23-2)+…+(210-2)
=(22+23+…+210)-2×9
=
| 22(1-29) |
| 1-2 |
(3)∵bn=
| ln(n+2) |
| ln(n+1) |
| ln(n+1) |
| ln(n+1) |
∴
| bn+1 |
| bn |
| ||
|
=
| ln(n+3)•ln(n+1) |
| [ln(n+2)]2 |
<
[
| ||
| [ln(n+2)]2 |
=
| [ln(n+3)(n+1)]2 |
| 4[ln(n+2)]2 |
<
[ln(
| ||
| 4[ln(n+2)]2 |
∴bn>bn+1.
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目