题目内容
已知f(x)=x3-3x,过点A(1,m) (m≠-2)可作曲线y=f(x)的三条切线,则实数m的取值范围是( )
| A.(-1,1) | B.(-2,3) | C.(-1,2) | D.(-3,-2) |
解;设切点坐标(x0,x03-3x),
∵f(x)=x3-3x,∴f′(x)=3x2-3
∴曲线y=f(x)在(x0,x03-3x)处的切线斜率为3x02-3
又∵切线过点A(1,m),∴切线斜率为
,
∴
=3x02-3
即2x03-3x02+m+3=0 ①
∵过点A(1,m) (m≠-2)可作曲线y=f(x)的三条切线,
∴方程①有3解.
令ω(x0)=2x03-3x02+m+3,则ω(x0)图象与x轴有2个交点,∴ω(x0)的极大值与极小值异号
ω′(x0)=6x02-6x0,令ω′(x0)=0,得6x0=0或1
∴ω(0)ω(1)<0,即(m+3)(m+2)<0
-3<m<-2
故选D
∵f(x)=x3-3x,∴f′(x)=3x2-3
∴曲线y=f(x)在(x0,x03-3x)处的切线斜率为3x02-3
又∵切线过点A(1,m),∴切线斜率为
| x03-3x -m |
| x0-1 |
∴
| x03-3x -m |
| x0-1 |
即2x03-3x02+m+3=0 ①
∵过点A(1,m) (m≠-2)可作曲线y=f(x)的三条切线,
∴方程①有3解.
令ω(x0)=2x03-3x02+m+3,则ω(x0)图象与x轴有2个交点,∴ω(x0)的极大值与极小值异号
ω′(x0)=6x02-6x0,令ω′(x0)=0,得6x0=0或1
∴ω(0)ω(1)<0,即(m+3)(m+2)<0
-3<m<-2
故选D
练习册系列答案
相关题目