题目内容
【题目】正四面体ABCD的体积为1,O为其中心,正四面体EFGH与正四面体ABCD关于点O对称,则这两个正四面体的公共部分的体积为( )
![]()
A.
B.
C.
D.![]()
【答案】B
【解析】
由题分析,
是正四面体的外接球球心,可得
为
的底面的高,即
到底面的距离为高的
,因为两个正四面体关于
对称,则两个对称水平面之间的距离为底面高的
,即顶点到水平面的距离为底面高的
,进而得到小正四面体的体积为正四面体的
,对应四个顶点由四个小正四面体,进而求得公共部分的体积
若将正四面体
放在一个水平面上,易知其中心到点
的距离是
到底面距离的
,所以反射的对称面是距离为
到
的底面距离
的水平,因此,它割
点所在的小正四面体时原正四面体的
,同理,对
三点处所切割的正四面体也是原正四面体的
,则可得到两个正四面体的公共部分体积为
,
故选:B
【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
分组 | 频数 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合计 | 20 |
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.
![]()
【题目】有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l至11kg)频数分布表如下(单位: kg):
分组 | | | | | |
频数 | 10 | 15 | 45 | 20 | 10 |
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量
近似服从正态分布
,其中
近似为样本平均数
近似为样本方差
.请估算该种植园内水果质量在
内的百分比;
(2)现在从质量为
的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量
的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为
元,求
的分布列及数学期望.
附:
,则
.