题目内容
如图所示,四棱锥中,,,底面,为的中点,点在上且.
(I)证明:;
(II)求直线与平面所成的角.
经市场调查:生产某产品需投入年固定成本为3万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元).通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(2)写出当产量为多少时利润最大,并求出最大值.
若集合,则 ( )
A. B.
C. D.
设,在约束条件下,目标函数的最大值小于,则的取值范围为( )
一个几何体的三视图如下图所示,其中主视图与左视图是腰长为6的等腰直角三角形,俯视图是正方形.
(Ⅰ)请画出该几何体的直观图,并求出它的体积;
(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1? 如何组拼?试证明你的结论;
(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值.
若f(x)=(m-1)x2+6mx+2是偶函数,则f(0)、f(1)、f(-2)从小到大的顺序是__________.
已知x、y满足约束条件,则的最小值为( )
A.-15 B.-20
C.-25 D.-30
若函数的单调递增区间是,则 .
证明:已知,则.