题目内容
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2n(n-1),n∈N*.
(I)求数列{an}的通项公式;
(II)设bn=
,求数列{bn}的前n项和Tn;
(III)求使不等式(1+
)(1+
)…(1+
)≥p
对一切n∈N*均成立的最大实数p的值.
(I)求数列{an}的通项公式;
(II)设bn=
| an |
| 2n |
(III)求使不等式(1+
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 3 |
| an+1 |
| 2n+1 |
分析:(I)由a1=1,Sn=nan-2n(n-1),知Sn+1=(n+1)an+1-2(n+1)n,故an+1=Sn+1-Sn=(n+1)an+1-nan-4n,所以an+1-an=4,由此能求出数列{an}的通项公式.
(II)由an=4n-3,知bn=
=
,所以Tn=
+
+
+…+
+
,由错位相减法能求出Tn=5-
.
(III)由(1+
)(1+
)…(1+
)≥p
对一切n∈N*均成立,知p≤
(1+
)(1+
)…(1+
)对一切n∈N*均成立,只需p≤[
(1+
)(1+
)…(1+
)]minmin,n∈N*,由此能求出实数p的最大值.
(II)由an=4n-3,知bn=
| an |
| 2n |
| 4n-3 |
| 2n |
| 1 |
| 2 |
| 5 |
| 22 |
| 9 |
| 23 |
| 4n-7 |
| 2n-1 |
| 4n-3 |
| 2n |
| 4n+5 |
| 2n |
(III)由(1+
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
| an+1 |
| 2n+1 |
| 1 | ||
|
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
| an+1 |
| 1 | ||
|
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
| an+1 |
解答:解:(I)证明:∵a1=1,Sn=nan-2n(n-1),
Sn+1=(n+1)an+1-2(n+1)n,
∴an+1=Sn+1-Sn=(n+1)an+1-nan-4n,
∴an+1-an=4,
∴数列{an}是首项为1,公差为4的等差数列,
∴an=1+(n-1)•4=4n-3.
(II)由(I)知:an=4n-3,
∴bn=
=
,
∴Tn=
+
+
+…+
+
,
∴
Tn=
+
+
+…+
+
,
两式相减,得:
Tn=
+4(
+
+
+…+
)-
=
+4×
-
=
+2-
-
,
∴Tn=5-
.
(III)∵(1+
)(1+
)…(1+
)≥p
对一切n∈N*均成立,
即p≤
(1+
)(1+
)…(1+
)对一切n∈N*均成立,
只需p≤[
(1+
)(1+
)…(1+
)]minmin,n∈N*,
令f(n)=
(1+
)(1+
)…(1+
),n≥2,且n∈N*,
则f(n-1)=
(1+
)(1+
)…(1+
),n≥2,且n∈N*,
=
(1+
)=
•
=
>1,n≥2,且n∈N*,
∴f(n)>f(n-1),n≥2,且n∈N*,
即f(n)在n∈N*上为增函数,
∴f(n) min=f(1)=
=
,
∴p≤
,
故实数p的最大值是
.
Sn+1=(n+1)an+1-2(n+1)n,
∴an+1=Sn+1-Sn=(n+1)an+1-nan-4n,
∴an+1-an=4,
∴数列{an}是首项为1,公差为4的等差数列,
∴an=1+(n-1)•4=4n-3.
(II)由(I)知:an=4n-3,
∴bn=
| an |
| 2n |
| 4n-3 |
| 2n |
∴Tn=
| 1 |
| 2 |
| 5 |
| 22 |
| 9 |
| 23 |
| 4n-7 |
| 2n-1 |
| 4n-3 |
| 2n |
∴
| 1 |
| 2 |
| 1 |
| 2 2 |
| 5 |
| 23 |
| 9 |
| 24 |
| 4n-7 |
| 2n |
| 4n-3 |
| 2n+1 |
两式相减,得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 2 |
| 1 |
| 2 3 |
| 1 |
| 2 4 |
| 1 |
| 2 n |
| 4n-3 |
| 2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 4n-3 |
| 2n+1 |
=
| 1 |
| 2 |
| 2 |
| 2 n-1 |
| 4n-3 |
| 2n+1 |
∴Tn=5-
| 4n+5 |
| 2n |
(III)∵(1+
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
| an+1 |
| 2n+1 |
即p≤
| 1 | ||
|
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
| an+1 |
只需p≤[
| 1 | ||
|
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
| an+1 |
令f(n)=
| 1 | ||
|
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
| an-1+1 |
则f(n-1)=
| 1 | ||
|
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 2 |
| an-1+1 |
| f(n) |
| f(n-1) |
| ||
|
| 2 |
| an+1 |
| ||
|
| 2n |
| 2n-1 |
| 2n | ||
|
∴f(n)>f(n-1),n≥2,且n∈N*,
即f(n)在n∈N*上为增函数,
∴f(n) min=f(1)=
| 2 | ||
|
2
| ||
| 3 |
∴p≤
2
| ||
| 3 |
故实数p的最大值是
2
| ||
| 3 |
点评:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易错点是求使不等式(1+
)(1+
)…(1+
)≥p
对一切n∈N*均成立的等价命题的转化,是高考的重点.解题时要认真审题,仔细解答.
| 2 |
| a1+1 |
| 2 |
| a2+1 |
| 3 |
| an+1 |
| 2n+1 |
练习册系列答案
相关题目