题目内容
已知数列{an}的前n项和的公式是Sn=
(2n2+n).
(1)求证:{an}是等差数列,并求出它的首项和公差;
(2)记bn=sinan•sinan+1•sinan+2,求出数列{an•bn}的前n项和Tn.
| π |
| 12 |
(1)求证:{an}是等差数列,并求出它的首项和公差;
(2)记bn=sinan•sinan+1•sinan+2,求出数列{an•bn}的前n项和Tn.
当n=1时,
当n≥2时,an=Sn-Sn-1=
(2n2+n)-
[2(n-1)2+(n-1)]=
(4n-1)
所以an=
(4n-1).an-a n-1=
,所以{an}是等差数列,它的首项为
和公差为
;
(2)b1=sina1•sina2•sina3=sin
sin
sin
=
×(-
)×(cos
-cos
)=
=
=
=
=-1,数列{bn}是等比数列,首项为
,公比为-1.
所以bn=
(-1)n-1,anbn=
(-1)n-1(4n-1).
错位相减法得Tn=
[1-(-1)n(4n+1)]
|
当n≥2时,an=Sn-Sn-1=
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
所以an=
| π |
| 12 |
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
(2)b1=sina1•sina2•sina3=sin
| π |
| 4 |
| 7π |
| 12 |
| 11π |
| 12 |
| ||
| 2 |
| 1 |
| 2 |
| 18π |
| 12 |
| 4π |
| 12 |
| ||
| 8 |
| bn |
| bn-1 |
| sinan-2 |
| sinan-1 |
| sin(an-1+π) |
| sinan-1 |
| -sinan-1 |
| sinan-1 |
| ||
| 8 |
所以bn=
| ||
| 8 |
| ||
| 96 |
错位相减法得Tn=
| ||
| 192 |
练习册系列答案
相关题目