题目内容
某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:| 分 组 | 频 数 | 频 率 |
| [40,50 ) | 2 | 0.04 |
| [50,60 ) | 3 | 0.06 |
| [60,70 ) | 14 | 0.28 |
| [70,80 ) | 15 | 0.30 |
| [80,90 ) | ||
| [90,100] | 4 | 0.08 |
| 合 计 |
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为[90,100]中任选出两位同学,共同帮助成绩在[40,50)中的某一个同学,试列出所有基本事件;若A1同学成绩为43分,B1同学成绩为95分,求A1、B1两同学恰好被安排在“二帮一”中同一小组的概率.
(II)列举出所有的二帮一小组的情况,列出A1、B1两同学恰好被安排在“二帮一”中同一小组的情况;利用古典概型的概率公式求出A1、B1两同学恰好被安排在“二帮一”中同一小组的概率.
| 12 |
| 50 |
因此填入12;0.24
第七行以此填入50;1
估计本次全校85分以上学生比例为
| 0.24 |
| 2 |
(Ⅱ)设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2
出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1两同学恰好被安排在“二帮一”中同一小组的有 A1B1B2;A1B1B3;A1B1B4
所以 A1、B1两同学恰好被安排在“二帮一”中同一小组的概率为
| 3 |
| 12 |
| 1 |
| 4 |
| 频数 |
| 样本容量 |
并制成如下频率分布表:
| 分组 | 频数 | 频率 |
| [70,80) | 4 | 0.04 |
| [80,80) | 6 | 0.06 |
| [90,100) | 20 | 0.20 |
| [100,110) | 22 | 0.22 |
| [110,120) | 18 | b |
| [120,130) | a | 0.15 |
| [130,140) | 10 | 0.10 |
| [140,150) | 5 | 0.05 |
| 合计 | c | 1 |
(Ⅱ)为了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并从这6名学生中再随机抽取2名,与心理老师面谈,求第七组至少有一名学生与心理老师面谈的概率’
(Ⅲ)估计该校本次考试的数学平均分.
某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为
中任选出两位同学,共同帮助成绩在
中的某一个同学,试列出所有基本事件;若
同学成绩为43分,
同学成绩为95分,求
、
两同学恰好被安排在“二帮一”中同一小组的概率.
|
分 组 |
频 数 |
频 率[来源:学_科_网] |
|
[40, 50 ) |
2 |
0.04 |
|
[ 50, 60 ) |
3 |
0.06 |
|
[ 60, 70 ) |
14 |
0.28 |
|
[ 70, 80 ) |
15 |
0.30 |
|
[ 80, 90 ) |
|
|
|
[ 90, 100 ] |
4 |
0.08 |
|
合 计 |
|
|
【解析】第一问利用表格可知第五行以此填入 12 0.24
第七行以此填入 50 1 估计本次全校85分以上学生比例为32%
第二问中,设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1两同学恰好被安排在“二帮一”中同一小组的有 A1B1B2;A1B1B3;A1B1B4
l利用古典概型概率得到。
(Ⅰ)第五行以此填入 12 0.24 ……………2分
第七行以此填入 50 1 ……………4分
估计本次全校85分以上学生比例为32% ……………6分
(Ⅱ)设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1两同学恰好被安排在“二帮一”中同一小组的有 A1B1B2;A1B1B3;A1B1B4
所以 A1、B1两同学恰好被安排在“二帮一”中同一小组的概率为 3 /12 =1 /4