题目内容
已知数列{an}的前n项和为Sn,且-1,Sn,an+1成等差数列,n∈N*,a1=1.函数f(x)=log3x.
(I)求数列{an}的通项公式;
(II)设数列{bn}满足bn=
,记数列{bn}的前n项和为Tn,试比较Tn与
-
的大小.
解:(I)∵-1,Sn,an+1成等差数列,
∴2Sn=an+1-1①
当n≥2时,2Sn-1=an-1②.
①-②得:2an=an+1-an,
∴
=3.
当n=1时,由①得2S1=2a1=a2-1,又a1=1,
∴a2=3,故
=3.
∴{an}是以1为首项3为公比的等比数列,
∴an=3n-1…(7分)
(II)∵f(x)=log3x,
∴f(an)=log3an=
=n-1,
bn=
=
=
(
-
),
∴Tn=
[(
-
)+(
-
)+…+(
-
)]
=
(
+
-
-
)
=
-
…(9分)
比较Tn与
-
的大小,只需比较2(n+2)(n+3)与312 的大小即可.…(10分)
2(n+2)(n+3)-312=2(n2+5n+6-156)=2(n2+5n+-150)=2(n+15)(n-10),
∵n∈N*,
∴当1≤n≤9时,2(n+2)(n+3)<312,即Tn<
-
;
当n=10时,2(n+2)(n+3)=312,即Tn=
-
;
当n>10且n∈N*时,2(n+2)(n+3)>312,即Tn>
-
.…(14分)
分析:(I)依题意可求得
=3( n≥2),再由2S1=2a1=a2-1,a1=1即可求得{an}是以1为首项3为公比的等比数列,从而可求数列{an}的通项公式;
(II)依题意可求得bn=
(
-
),利用累加法可求得Tn,从而通过分类讨论即可比较Tn与
-
的大小.
点评:本题考查数列的求和,突出考查裂项法求和,着重考查分类讨论思想与转化思想的综合应用,属于难题.
∴2Sn=an+1-1①
当n≥2时,2Sn-1=an-1②.
①-②得:2an=an+1-an,
∴
当n=1时,由①得2S1=2a1=a2-1,又a1=1,
∴a2=3,故
∴{an}是以1为首项3为公比的等比数列,
∴an=3n-1…(7分)
(II)∵f(x)=log3x,
∴f(an)=log3an=
bn=
∴Tn=
=
=
比较Tn与
2(n+2)(n+3)-312=2(n2+5n+6-156)=2(n2+5n+-150)=2(n+15)(n-10),
∵n∈N*,
∴当1≤n≤9时,2(n+2)(n+3)<312,即Tn<
当n=10时,2(n+2)(n+3)=312,即Tn=
当n>10且n∈N*时,2(n+2)(n+3)>312,即Tn>
分析:(I)依题意可求得
(II)依题意可求得bn=
点评:本题考查数列的求和,突出考查裂项法求和,着重考查分类讨论思想与转化思想的综合应用,属于难题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |