题目内容
已知数列{an}的前n项和为Sn,a1=
,Sn=n2an-n(n-1),n=1,2,…
(1)证明:数列{
Sn}是等差数列,并求Sn;
(2)设bn=
,求证:b1+b2+…+bn<
.
| 1 |
| 2 |
(1)证明:数列{
| n+1 |
| n |
(2)设bn=
| Sn |
| n3+3n2 |
| 5 |
| 12 |
(1)证明:由Sn=n2an-n(n-1)知,
当n≥2时:Sn=n2(Sn-Sn-1)-n(n-1),…(1分)
即(n2-1)Sn-n2Sn-1=n(n-1),
∴
Sn-
Sn-1=1,对n≥2成立. …(3分)
又
S1=1,∴{
Sn}是首项为1,公差为1的等差数列.
Sn=1+(n-1)•1…(5分)
∴Sn=
…(6分)
(2)证明:bn=
=
=
(
-
)…(8分)
∴b1+b2+…+bn=
(
-
+
-
+…+
-
+
-
)
=
(
-
-
)<
…(12分)
当n≥2时:Sn=n2(Sn-Sn-1)-n(n-1),…(1分)
即(n2-1)Sn-n2Sn-1=n(n-1),
∴
| n+1 |
| n |
| n |
| n-1 |
又
| 1+1 |
| 1 |
| n+1 |
| n |
| n+1 |
| n |
∴Sn=
| n2 |
| n+1 |
(2)证明:bn=
| Sn |
| n3+3n |
| 1 |
| (n+1)(n+3) |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+3 |
∴b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| n+1 |
| 1 |
| n+3 |
=
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 5 |
| 12 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |