题目内容
数列{an}中,a1=1,前n项的和是Sn,且Sn=2an-1,n∈N*.
(I)求出 a2,a3,a4;
(II)求数列{an}的通项公式;
(III)求证:SnSn+2<
.
(I)求出 a2,a3,a4;
(II)求数列{an}的通项公式;
(III)求证:SnSn+2<
| S | 2n+1 |
(I)∵a1=1,Sn=2an-1,
∴当n=2时,a1+a2=2a2-1,∴a2=2
当n=3时,a1+a2+a3=2a3-1,∴a3=4
当n=4时,a1+a2+a3+a4=2a4-1,∴a4=8 …(3分)
(II)∵Sn=2an-1,n∈N*. (1)
∴Sn-1=2an-1-1,n≥2,n∈N*. (2)
(1)-(2)得an=2an-1,
∴数列{an}是以1为首项,2为公比的等比数列,
∴an=2n-1…(8分)
(III)证明:∵Sn=2an-1=2n-1,
∴SnSn+2=(2n-1)•(2n+2-1)=22n+2-2n+2-2n+1,
=22n+2-2n+2+1
∵2n>0
∴SnSn+2<
.…(13分)
∴当n=2时,a1+a2=2a2-1,∴a2=2
当n=3时,a1+a2+a3=2a3-1,∴a3=4
当n=4时,a1+a2+a3+a4=2a4-1,∴a4=8 …(3分)
(II)∵Sn=2an-1,n∈N*. (1)
∴Sn-1=2an-1-1,n≥2,n∈N*. (2)
(1)-(2)得an=2an-1,
∴数列{an}是以1为首项,2为公比的等比数列,
∴an=2n-1…(8分)
(III)证明:∵Sn=2an-1=2n-1,
∴SnSn+2=(2n-1)•(2n+2-1)=22n+2-2n+2-2n+1,
| S | 2n+1 |
∵2n>0
∴SnSn+2<
| S | 2n+1 |
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|