题目内容

数列{an}中,a1=1,前n项的和是Sn,且Sn=2an-1,n∈N*
(I)求出 a2,a3,a4
(II)求数列{an}的通项公式;
(III)求证:SnSn+2
S2n+1
(I)∵a1=1,Sn=2an-1,
∴当n=2时,a1+a2=2a2-1,∴a2=2
当n=3时,a1+a2+a3=2a3-1,∴a3=4
当n=4时,a1+a2+a3+a4=2a4-1,∴a4=8      …(3分)
(II)∵Sn=2an-1,n∈N*.         (1)
∴Sn-1=2an-1-1,n≥2,n∈N*.    (2)
(1)-(2)得an=2an-1
∴数列{an}是以1为首项,2为公比的等比数列,
∴an=2n-1…(8分)
(III)证明:∵Sn=2an-1=2n-1,
∴SnSn+2=(2n-1)•(2n+2-1)=22n+2-2n+2-2n+1,
S2n+1
=22n+2-2n+2+1
∵2n>0
∴SnSn+2
S2n+1
.…(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网