题目内容
已知函数f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R,e为自然对数的底)(Ⅰ)求f(x)的单调区间;
(II)若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.
分析:(Ⅰ)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,
(II)根据)若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,得到函数f(x)在区间(0,e]上不单调,并且有
,从而求得a的取值范围.
(II)根据)若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,得到函数f(x)在区间(0,e]上不单调,并且有
|
解答:解:(Ⅰ)∵f′(x)=(2-a)-
,(x>0),
∴(1)当2-a≤0即a≥2时f'(x)<0恒成立.
(2)当2-a>0即a<2时,由f'(x)<0,得0<x<
;
由f'(x)>0,得x>
.
因此:当a≥2时函数f(x)的单调减区间是(0,+∞);
当a<2时,函数f(x)的单调减区间是(0,
),单调增区间是(
,+∞)
(II)∵g'(x)=(1-x)e1-x,
∴g(x)在(0,1)上单调递增,在(1,e]上单调递减,
又因为g(0)=0,g(1)=1,g(e)=e2-e>0,
∴g(x)在(0,e]上的值域为(0,1].
由(Ⅰ)知当a≥2时函数f(x)在区间(0,e]上单调递减,不合题意,
∴a<2,并且0<
<e,即a<2-
①
∵x→0时f(x)→+∞,故对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同xi(i=1,2),
使得f(xi)=g(x0)成立,当且仅当a满足
,
注意到f(1)=0,故只要f(e)=(2-a)(e-1)-2≥1,即a≤2-
②
由①②知,所求的a得取值范围是(-∞,2-
]
| 2 |
| x |
∴(1)当2-a≤0即a≥2时f'(x)<0恒成立.
(2)当2-a>0即a<2时,由f'(x)<0,得0<x<
| 2 |
| 2-a |
由f'(x)>0,得x>
| 2 |
| 2-a |
因此:当a≥2时函数f(x)的单调减区间是(0,+∞);
当a<2时,函数f(x)的单调减区间是(0,
| 2 |
| 2-a |
| 2 |
| 2-a |
(II)∵g'(x)=(1-x)e1-x,
∴g(x)在(0,1)上单调递增,在(1,e]上单调递减,
又因为g(0)=0,g(1)=1,g(e)=e2-e>0,
∴g(x)在(0,e]上的值域为(0,1].
由(Ⅰ)知当a≥2时函数f(x)在区间(0,e]上单调递减,不合题意,
∴a<2,并且0<
| 2 |
| 2-a |
| 2 |
| e |
∵x→0时f(x)→+∞,故对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同xi(i=1,2),
使得f(xi)=g(x0)成立,当且仅当a满足
|
注意到f(1)=0,故只要f(e)=(2-a)(e-1)-2≥1,即a≤2-
| 3 |
| e-1 |
由①②知,所求的a得取值范围是(-∞,2-
| 3 |
| e-1 |
点评:此题是个难题.考查利用导数研究函数的单调性,和求函数的最值问题,体现了分类讨论和数形结合以及题意的理解与转化的思想.特别是问题(2)的设置,考查了学生创造性分析解决问题的能力.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|