题目内容
设A,B为圆x2+y2=1上两点,O为坐标原点(A,O,B不共线)
(1)求证:
+
与
-
垂直.
(2)当∠xOA=
,∠xOB=θ,θ∈(-
,
)且
•
=
时,求sinθ的值.
(1)求证:
| OA |
| OB |
| OA |
| OB |
(2)当∠xOA=
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| OA |
| OB |
| 3 |
| 5 |
分析:(1)由已知中A,B为圆x2+y2=1上两点,O为坐标原点(A,O,B不共线),可得|
|=|
|=1,进而证得
+
与
-
的数量积为0,得到两个向量垂直.
(2)由∠xOA=
,∠xOB=θ,θ∈(-
,
),可得A,B坐标,进而根据
•
=
,结合同角三角函数的基本关系和两角差的正弦公式,得到答案.
| OA |
| OB |
| OA |
| OB |
| OA |
| OB |
(2)由∠xOA=
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| OA |
| OB |
| 3 |
| 5 |
解答:(1)证明:∵A,B为圆x2+y2=1上两点,O为坐标原点
∴|
|=|
|=1,
又∵(
+
)•(
-
)
=
2-
2
=|
|2-|
|2
=1-1=0
∴
+
⊥
-
…(4分)
(2)解:∵∠xOA=
,∠xOB=θ,θ∈(-
,
)
∴A(cos
,sin
),B(cosθ,sinθ)
∴
•
=cos
cosθ+sin
sinθ=sin(
+θ)=
…(8分)
∵θ∈(-
,
)
∴θ+
∈(0,
)
∴cos(θ+
)=
…(10分)
sinθ=sin(θ+
-
)=sin(θ+
)cos
-cos(θ+
)sin
=-
∴|
| OA |
| OB |
又∵(
| OA |
| OB |
| OA |
| OB |
=
| OA |
| OB |
=|
| OA |
| OB |
=1-1=0
∴
| OA |
| OB |
| OA |
| OB |
(2)解:∵∠xOA=
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
∴A(cos
| π |
| 4 |
| π |
| 4 |
∴
| OA |
| OB |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
∵θ∈(-
| π |
| 4 |
| π |
| 4 |
∴θ+
| π |
| 4 |
| π |
| 2 |
∴cos(θ+
| π |
| 4 |
| 4 |
| 5 |
sinθ=sin(θ+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 10 |
点评:本题考查的知识点是用向量的数量积判断两个向量的垂直关系,平面向量的数量积运算,是向量与三角函数的综合应用,难度为中档.
练习册系列答案
相关题目