题目内容

设A,B为圆x2+y2=1上两点,O为坐标原点(A,O,B不共线)
(1)求证:
OA
+
OB
OA
-
OB
垂直.
(2)当∠xOA=
π
4
,∠xOB=θ,θ∈(-
π
4
π
4
)
OA
OB
=
3
5
时,求sinθ的值.
分析:(1)由已知中A,B为圆x2+y2=1上两点,O为坐标原点(A,O,B不共线),可得|
OA
|=|
OB
|=1,进而证得
OA
+
OB
OA
-
OB
的数量积为0,得到两个向量垂直.
(2)由∠xOA=
π
4
,∠xOB=θ,θ∈(-
π
4
π
4
)
,可得A,B坐标,进而根据
OA
OB
=
3
5
,结合同角三角函数的基本关系和两角差的正弦公式,得到答案.
解答:(1)证明:∵A,B为圆x2+y2=1上两点,O为坐标原点
∴|
OA
|=|
OB
|=1,
又∵(
OA
+
OB
)•(
OA
-
OB

=
OA
2
-
OB
2

=|
OA
|
2
-|
OB
|
2

=1-1=0
OA
+
OB
OA
-
OB
…(4分)
(2)解:∵∠xOA=
π
4
,∠xOB=θ,θ∈(-
π
4
π
4
)

A(cos
π
4
,sin
π
4
),B(cosθ,sinθ)

OA
OB
=cos
π
4
cosθ+sin
π
4
sinθ=sin(
π
4
+θ)=
3
5
…(8分)
θ∈(-
π
4
π
4
)

∴θ+
π
4
∈(0,
π
2
)

cos(θ+
π
4
)=
4
5
…(10分)
sinθ=sin(θ+
π
4
-
π
4
)=sin(θ+
π
4
)cos
π
4
-cos(θ+
π
4
)sin
π
4
=-
2
10
点评:本题考查的知识点是用向量的数量积判断两个向量的垂直关系,平面向量的数量积运算,是向量与三角函数的综合应用,难度为中档.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网