题目内容
已知二次函数f(x)满足f(-1)=0,且x≤f(x)≤
(x2+1)对一切实数x恒成立.
(1)求f(1);
(2)求f(x)的表达式;
(3)求证:
+
+
+…+
>
.
| 1 |
| 2 |
(1)求f(1);
(2)求f(x)的表达式;
(3)求证:
| 1 |
| f(1) |
| 1 |
| f(2) |
| 1 |
| f(3) |
| 1 |
| f(n) |
| 4n |
| 2n+4 |
分析:(1)根据条件,令x=1,可得1≤f(1)≤
(12+1)=1,由此求得f(1)的值.
(2)设f(x)=ax2+bx+c,则
,可得
.
又ax2-
x+
-a≥0恒成立,可得
,解得a和c的值,从而求得函数f(x)的解析式.
(3)由(2)得f(n)=
(n+1)2,再根据
+
+
+…+
=
+
+
+…+
>4(
+
+
+…
),化简即可证得结论.
| 1 |
| 2 |
(2)设f(x)=ax2+bx+c,则
|
|
又ax2-
| 1 |
| 2 |
| 1 |
| 2 |
|
(3)由(2)得f(n)=
| 1 |
| 4 |
| 1 |
| f(1) |
| 1 |
| f(2) |
| 1 |
| f(3) |
| 1 |
| f(n) |
| 4 |
| 22 |
| 4 |
| 32 |
| 4 |
| 42 |
| 4 |
| (n+1)2 |
| 1 |
| 2•3 |
| 1 |
| 3•4 |
| 1 |
| 4•5 |
| 1 |
| (n+1)(n+2) |
解答:解:(1)根据x≤f(x)≤
(x2+1)对一切实数x恒成立,
令x=1,可得1≤f(1)≤
(12+1)=1,∴f(1)=1.
(2)设f(x)=ax2+bx+c,则
,解得
.
又f(x)=ax2+
x+c=ax2+
x+
-a≥x恒成立,即ax2-
x+
-a≥0恒成立,
∴
,解得a=
,c=
,故 f(x)=
x2+
x+
=
(x+1)2.
(3)由(2)得f(n)=
(n+1)2,
+
+
+…+
=
+
+
+…+
>4(
+
+
+…
)
=4(
-
+
-
+…+
-
)=4(
-
)=
,
故
+
+
+…+
>
成立.
| 1 |
| 2 |
令x=1,可得1≤f(1)≤
| 1 |
| 2 |
(2)设f(x)=ax2+bx+c,则
|
|
又f(x)=ax2+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
|
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
(3)由(2)得f(n)=
| 1 |
| 4 |
| 1 |
| f(1) |
| 1 |
| f(2) |
| 1 |
| f(3) |
| 1 |
| f(n) |
| 4 |
| 22 |
| 4 |
| 32 |
| 4 |
| 42 |
| 4 |
| (n+1)2 |
>4(
| 1 |
| 2•3 |
| 1 |
| 3•4 |
| 1 |
| 4•5 |
| 1 |
| (n+1)(n+2) |
=4(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 4n |
| 2n+4 |
故
| 1 |
| f(1) |
| 1 |
| f(2) |
| 1 |
| f(3) |
| 1 |
| f(n) |
| 4n |
| 2n+4 |
点评:本题主要考查函数的恒成立问题,用待定系数法求函数的解析式,用放缩法证明不等式,属于难题.
练习册系列答案
相关题目