题目内容
(1)求定积分∫1-2|x2-2|dx的值;
(2)若复数z1=a+2i(a∈R),z2=3-4i,且
为纯虚数,求|z1|
(2)若复数z1=a+2i(a∈R),z2=3-4i,且
| z1 |
| z2 |
(1)∫-21|x2-2|dx=
(x2-2)dx+
(2-x2)dx
=
x3-2x
+2x-
x3
=
故定积分是
(2)
=
=
=
∵这个复数是一个纯虚数,
∴3a-8=0,
∴a=
∴|z1|=
=
故复数的模长是
| ∫ | -
|
| ∫ | 1-
|
=
| 1 |
| 3 |
| | | -
|
| 1 |
| 3 |
| | | 1-
|
1+8
| ||
| 3 |
故定积分是
1+8
| ||
| 3 |
(2)
| z1 |
| z2 |
| a+2i |
| 3-4i |
| (a+2i)(3+4i) |
| (3-4i)(3+4i) |
| 3a-8+4ai+6i |
| 25 |
∵这个复数是一个纯虚数,
∴3a-8=0,
∴a=
| 8 |
| 3 |
∴|z1|=
4+
|
| 10 |
| 3 |
故复数的模长是
| 10 |
| 3 |
练习册系列答案
相关题目