题目内容

(2010•淄博一模)设数列{an}的前n项和为Sn,a1=1,Sn=nan-2n(n-1).
(Ⅰ)求数列数列{an}的通项公式an
(Ⅱ)设数列{
1
anan+1
}
的前n项和为Tn,求证
1
5
Tn
1
4
分析:(I)由Sn=nan-2n(n-1)结合通项和前n项和的关系,转化为an+1-an=4(n≥2)再由等差数列的定义求解,要注意分类讨论.
(II)利用裂项求和法求出Tn=
1
a1a2
+…+
1
anan+1
=
1
4
(1-
1
4n+1
)<
1
4
,又易知Tn单调递增,
TnT1=
1
5
,从而证得结论.
解答:解:(I)由Sn=nan-2n(n-1)
得an+1=Sn+1-Sn=(n+1)an+1-nan-4n
即an+1-an=4…(4分)∴数列{an}是以1为首项,4为公差的等差数列∴an=4n-3.…(6分)
(II)Tn=
1
a1a2
+…+
1
anan+1
=
1
1×5
+
1
5×9
+
1
9×13
+…+
1
(4n-3)×(4n+1)
=
1
4
(1-
1
5
+
1
5
-
1
9
+
1
9
-
1
13
+…+
1
4n-3
-
1
4n+1
)
=
1
4
(1-
1
4n+1
)<
1
4
…(10分)
又易知Tn单调递增,
TnT1=
1
5

1
5
Tn
1
4
.…(12分)
点评:本题主要考查数列的转化与通项公式和求和方法,这里涉及了通项与前n项和之间的关系及裂项求和法,这是数列考查中常考常新的问题,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网