题目内容
已知数列{an} 的前n项和为Sn,f(x)=
,an=log2
,则S2011=
| 2x-1 |
| x+1 |
| f(n+1) |
| f(n) |
1+log2
| 1341 |
| 671 |
1+log2
.| 1341 |
| 671 |
分析:由f(x)=
,知an=log2
=log2(
×
),故S2011=log2[(
×
)×(
×
)×(
×
)×(
×
)×…×(
×
)×(
×
)],简化为log2(2×
),由此能求出结果.
| 2x-1 |
| x+1 |
| f(n+1) |
| f(n) |
| 2n+1 |
| n+2 |
| n+1 |
| 2n-1 |
| 3 |
| 3 |
| 2 |
| 1 |
| 5 |
| 4 |
| 3 |
| 3 |
| 7 |
| 5 |
| 4 |
| 5 |
| 9 |
| 6 |
| 5 |
| 7 |
| 4021 |
| 2012 |
| 2011 |
| 4019 |
| 4023 |
| 2013 |
| 2012 |
| 4021 |
| 4023 |
| 2013 |
解答:解:∵f(x)=
,
∴an=log2
=log2
=log2(
×
),
∴S2011=log2[(
×
)×(
×
)×(
×
)×(
×
)×…×(
×
)×(
×
)]
=log2[(
×
)×(
×
)×(
×
)×(
×
)×…×(
×
)×(
×
)]
=log2(2×
)
=log22+log2
=1+log2
.
故答案为:1+log2
.
| 2x-1 |
| x+1 |
∴an=log2
| f(n+1) |
| f(n) |
| ||
|
| 2n+1 |
| n+2 |
| n+1 |
| 2n-1 |
∴S2011=log2[(
| 2×1+1 |
| 1+2 |
| 1+1 |
| 2×1-1 |
| 2×2+1 |
| 2+2 |
| 2+1 |
| 2×2-1 |
| 2×3+1 |
| 3+2 |
| 3+1 |
| 2×3-1 |
| 2×4+1 |
| 4+2 |
| 4+1 |
| 2×4-1 |
| 2×2010+1 |
| 2010+2 |
| 2010+1 |
| 2×2010-1 |
| 2×2011+1 |
| 2011+2 |
| 2011+1 |
| 2×2011-1 |
=log2[(
| 3 |
| 3 |
| 2 |
| 1 |
| 5 |
| 4 |
| 3 |
| 3 |
| 7 |
| 5 |
| 4 |
| 5 |
| 9 |
| 6 |
| 5 |
| 7 |
| 4021 |
| 2012 |
| 2011 |
| 4019 |
| 4023 |
| 2013 |
| 2012 |
| 4021 |
=log2(2×
| 4023 |
| 2013 |
=log22+log2
| 1341 |
| 671 |
=1+log2
| 1341 |
| 671 |
故答案为:1+log2
| 1341 |
| 671 |
点评:本题考查数列与函数的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目