题目内容
记an为(1+x)n+1的展开式中含xn-1项的系数,则
(
+
+…+
)=______.
| lim |
| n→∞ |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
由题意可得 an=
=
=
,
∴
=
=2(
-
),
∴
(
+
+…+
)=
2[(
-
)+(
-
)+(
-
)+…+(
-
)]=
2(1-
)=2,
故答案为:2.
| C | n-1n+1 |
| C | 2n+1 |
| n(n+1) |
| 2 |
∴
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| lim |
| n→∞ |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| lim |
| n→∞ |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| lim |
| n→∞ |
| 1 |
| n+1 |
故答案为:2.
练习册系列答案
相关题目