题目内容
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| bn•bn+1 |
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若数列{cn}的前n项和为Tn,求Tn.
分析:(Ⅰ)由题设知an=(
)n,bn+2=3log
an(n∈N*)=3log
(
)n=3n,由此能求出数列{bn}的通项公式.
(Ⅱ)由cn=
=
=
-
,能求出数列{cn}的前n项和为Tn.
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
(Ⅱ)由cn=
| 3 |
| bn•bn+1 |
| 3 |
| (3n-2)(3n+1) |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
解答:解:(Ⅰ)∵{an}是首项为a1=
,公比q=
的等比数列,
∴an=(
)n,bn+2=3log
an(n∈N*)=3log
(
)n=3n,
∴bn=3n-2.
(Ⅱ)cn=
=
=
-
,
∴Tn=(1-
)+(
-
)+…+(
-
)
=1-
.
| 1 |
| 4 |
| 1 |
| 4 |
∴an=(
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
∴bn=3n-2.
(Ⅱ)cn=
| 3 |
| bn•bn+1 |
| 3 |
| (3n-2)(3n+1) |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
∴Tn=(1-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3n-2 |
| 1 |
| 3n+1 |
=1-
| 1 |
| 3n+1 |
点评:本题考查数列的递推式和数列的求和,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目
设数列{an}是首项为a1公差为-2的等差数列,如果a1+a4+a7=50,那么a3+a6+a9=( )
| A、28 | B、-78 | C、-48 | D、38 |