ÌâÄ¿ÄÚÈÝ
£¨2009•¼Î¶¨Çø¶þÄ££©ÒÑÖªÍÖÔ²C1£º
+
=1£¨a£¾b£¾0£©Âú×ãa£ºb=
£º
£¬ÇÒÍÖÔ²C1¹ýµã(
£¬
)£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²C1µÄ×ó½¹µãΪF1£¬ÓÒ½¹µãΪF2£¬Ö±Ïßl1¹ýµãF1ÇÒ´¹Ö±ÓÚÍÖÔ²C1µÄ³¤Öᣬ¶¯Ö±Ïßl2´¹Ö±ÓÚl1ÇÒÓël1½»ÓÚµãP£¬Ïß¶ÎPF2µÄ´¹Ö±Æ½·ÖÏß½»l2ÓÚµãM£¬ÇóµãMµÄ¹ì¼£C2µÄ·½³Ì£»
£¨3£©ÉèÇúÏßC2ÓëxÖá½»ÓÚµãQ£¬C2ÉÏÓÐÓëQ²»ÖغϵIJ»Í¬Á½µãR£¨x1£¬y1£©¡¢S£¨x2£¬y2£©£¬ÇÒÂú×ã
•
=0£¬ÇóµãSµÄºá×ø±êx2µÄȡֵ·¶Î§£®
| x2 |
| a2 |
| y2 |
| b2 |
| 3 |
| 2 |
| ||
| 2 |
| ||
| 2 |
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèÍÖÔ²C1µÄ×ó½¹µãΪF1£¬ÓÒ½¹µãΪF2£¬Ö±Ïßl1¹ýµãF1ÇÒ´¹Ö±ÓÚÍÖÔ²C1µÄ³¤Öᣬ¶¯Ö±Ïßl2´¹Ö±ÓÚl1ÇÒÓël1½»ÓÚµãP£¬Ïß¶ÎPF2µÄ´¹Ö±Æ½·ÖÏß½»l2ÓÚµãM£¬ÇóµãMµÄ¹ì¼£C2µÄ·½³Ì£»
£¨3£©ÉèÇúÏßC2ÓëxÖá½»ÓÚµãQ£¬C2ÉÏÓÐÓëQ²»ÖغϵIJ»Í¬Á½µãR£¨x1£¬y1£©¡¢S£¨x2£¬y2£©£¬ÇÒÂú×ã
| QR |
| RS |
·ÖÎö£º£¨1£©Éèa=
k£¬b=
k£¨k£¾0£©£¬ËùÒÔÍÖÔ²C1µÄ·½³ÌΪ
+
=1£¬ÓÉÍÖÔ²C1¹ýµã(
£¬
)£¬½âµÃk=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²C1µÄ·½³Ì£®
£¨2£©F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ËùÒÔÖ±Ïßl1µÄ·½³ÌΪx=-1£¬ÓÉ|MP|=|MF2|£¬ÖªµãMµÄ¹ì¼£C2ÊÇÒÔF2Ϊ½¹µã£¬Ö±Ïßl1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬ÓÉ´ËÄÜÇó³ö¹ì¼£C2µÄ·½³Ì£®
£¨3£©Q£¨0£¬0£©£¬ÉèR(
£¬y1)£¬S(
£¬y2)£¬ËùÒÔ
=(
£¬y1)£¬
=(
£¬y2-y1)£¬ÒòΪ
•
=0£¬ËùÒÔ
+y1(y2-y1)=0£¬»¯¼òµÃy2=-(y1+
)£¬ÓÉ´ËÄÜÇó³öµãSµÄºá×ø±êµÄȡֵ·¶Î§ÊÇ[16£¬+¡Þ£©£®
| 3 |
| 2 |
| x2 |
| 3k2 |
| y2 |
| 2k2 |
| ||
| 2 |
| ||
| 2 |
£¨2£©F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ËùÒÔÖ±Ïßl1µÄ·½³ÌΪx=-1£¬ÓÉ|MP|=|MF2|£¬ÖªµãMµÄ¹ì¼£C2ÊÇÒÔF2Ϊ½¹µã£¬Ö±Ïßl1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬ÓÉ´ËÄÜÇó³ö¹ì¼£C2µÄ·½³Ì£®
£¨3£©Q£¨0£¬0£©£¬ÉèR(
| ||
| 4 |
| ||
| 4 |
| QR |
| ||
| 4 |
| RS |
| ||||
| 4 |
| QR |
| RS |
| ||||||
| 16 |
| 16 |
| y1 |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬¿ÉÉèa=
k£¬b=
k£¨k£¾0£©£¬
ËùÒÔÍÖÔ²C1µÄ·½³ÌΪ
+
=1£¬¡£¨2·Ö£©
ÒòΪÍÖÔ²C1¹ýµã(
£¬
)£¬ËùÒÔÓÐ
+
=1£¬½âµÃk=1£¬¡£¨3·Ö£©
ËùÒÔÍÖÔ²C1µÄ·½³ÌΪ
+
=1£®¡£¨4·Ö£©
£¨2£©F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ËùÒÔÖ±Ïßl1µÄ·½³ÌΪx=-1£¬¡£¨5·Ö£©
ÓÉÌâÒ⣬|MP|=|MF2|£¬ËùÒÔµãMµÄ¹ì¼£C2ÊÇÒÔF2Ϊ½¹µã£¬Ö±Ïßl1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬
ËùÒԹ켣C2µÄ·½³ÌÊÇy2=4x£® ¡£¨10·Ö£©
£¨3£©Q£¨0£¬0£©£¬ÉèR(
£¬y1)£¬S(
£¬y2)£¬
ËùÒÔ
=(
£¬y1)£¬
=(
£¬y2-y1)£¬
ÒòΪ
•
=0£¬ËùÒÔ
+y1(y2-y1)=0£¬¡£¨12·Ö£©
ÒòΪy1¡Ùy2£¬y1¡Ù0£¬»¯¼òµÃy2=-(y1+
)£¬¡£¨15·Ö£©
ËùÒÔ
=
+
+32¡Ý64£¬µ±ÇÒ½öµ±
=
£¬y1=¡À4ʱµÈºÅ³ÉÁ¢£®¡£¨16·Ö£©
ËùÒÔx2=
¡Ý16£¬µãSµÄºá×ø±êµÄȡֵ·¶Î§ÊÇ[16£¬+¡Þ£©£®¡£¨18·Ö£©
| 3 |
| 2 |
ËùÒÔÍÖÔ²C1µÄ·½³ÌΪ
| x2 |
| 3k2 |
| y2 |
| 2k2 |
ÒòΪÍÖÔ²C1¹ýµã(
| ||
| 2 |
| ||
| 2 |
| 3 |
| 12k2 |
| 6 |
| 8k2 |
ËùÒÔÍÖÔ²C1µÄ·½³ÌΪ
| x2 |
| 3 |
| y2 |
| 2 |
£¨2£©F1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ËùÒÔÖ±Ïßl1µÄ·½³ÌΪx=-1£¬¡£¨5·Ö£©
ÓÉÌâÒ⣬|MP|=|MF2|£¬ËùÒÔµãMµÄ¹ì¼£C2ÊÇÒÔF2Ϊ½¹µã£¬Ö±Ïßl1Ϊ׼ÏßµÄÅ×ÎïÏߣ¬
ËùÒԹ켣C2µÄ·½³ÌÊÇy2=4x£® ¡£¨10·Ö£©
£¨3£©Q£¨0£¬0£©£¬ÉèR(
| ||
| 4 |
| ||
| 4 |
ËùÒÔ
| QR |
| ||
| 4 |
| RS |
| ||||
| 4 |
ÒòΪ
| QR |
| RS |
| ||||||
| 16 |
ÒòΪy1¡Ùy2£¬y1¡Ù0£¬»¯¼òµÃy2=-(y1+
| 16 |
| y1 |
ËùÒÔ
| y | 2 2 |
| y | 2 1 |
| 256 | ||
|
| y | 2 1 |
| 256 | ||
|
ËùÒÔx2=
| ||
| 4 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÍÖÔ²±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Ô²µÄ¼òµ¥ÐÔÖʵȻù´¡ÖªÊ¶£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²éº¯ÊýÓë·½³Ì˼Ï룬»¯¹éÓëת»¯Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿