题目内容
【题目】已知在平面直角坐标系
中,椭圆
的方程为
,以
为极点,
轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程和椭圆
的参数方程;
(2)设
为椭圆
上任意一点,求
的最大值.
【答案】(1)直线
的直角坐标方程为
,椭圆
的参数方程为
为参数);(2)9.
【解析】试题分析:(1)根据题意,由参数方程的定义可得椭圆的参数方程,对直线
的极坐标方程利用两角和的正弦展开,将
,
代入可得直线
的普通方程;(2)根据题意,设
,进而分析可得
,由三角函数的性质分析可得答案.
试题解析:(1)由
,得
,
将
代入,得直线
的直角坐标方程为
.
椭圆
的参数方程为
为参数).
(2)因为点
在椭圆
上,所以设
,
则
,
当且仅当
时,取等号,所以
.
练习册系列答案
相关题目