题目内容

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM•AN是否为定值,若是,则求出定值;若不是,请说明理由.
分析:(1)由直线l1与圆相切,则圆心到直线的距离等于半径,求得直线方程,注意分类讨论;
(2)分别联立相应方程,求得M,N的坐标,再求AM•AN.
解答:解:(1)①若直线l1的斜率不存在,即直线x=1,符合题意.(2分)
②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0.
由题意知,圆心(3,4)到已知直线l1的距离等于半径2,
|3k-4-k|
 
k2+1
=2
解之得 k=
3
4

所求直线方程是x=1,3x-4y-3=0.(5分)
(2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx-y-k=0
x+2y+2=0
kx-y-k=0
N(
2k-2
2k+1
,-
3k
2k+1
)

又直线CM与l1垂直,
y=kx-k
y-4=-
1
k
(x-3)
M(
k2+4k+3
1+k2
4k2+2k
1+k2
)


∴AM*AN=
2 |2k+1|
1+k2
1+k2
3
1+k2
|2k+1|
=6
为定值.(10分)
点评:youy本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网