题目内容
计算下列各式:
(1)
;
(2)2(lg
)2+lg
•lg5+
.
(1)
(a
| ||||||||
|
(2)2(lg
| 2 |
| 2 |
(lg
|
分析:(1)根据分数指数幂的定义
=a
进行化简.
(2)直接利用对数的运算性质求解即可.
| n | am |
| m |
| n |
(2)直接利用对数的运算性质求解即可.
解答:解:(1)
=
=
=1
(2)2(lg
)2+lg
•lg5+
=2(lg2
)2+lg2
•lg5+
=2(
lg2)2+
lg2•lg5+
=2(
lg2)2+
lg2•lg5+
=
lg2(lg2+lg5)+|
lg2-1|
=
lg2•lg(2•5)+1-
lg2
=
lg2+1-
lg2=1
(a
| ||||||||
|
a-
| ||||||||
a
|
a
| ||||
a
|
(2)2(lg
| 2 |
| 2 |
(lg
|
=2(lg2
| 1 |
| 2 |
| 1 |
| 2 |
(lg2
|
=2(
| 1 |
| 2 |
| 1 |
| 2 |
(
|
=2(
| 1 |
| 2 |
| 1 |
| 2 |
(
|
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
点评:此题考查了有理数指数幂的化简求值以及对数的运算性质,做题过程要认真,仔细,确保正确率,属于基础题.
练习册系列答案
相关题目