题目内容
设f(x)=-x3,f(a-bx)的导数是( )
分析:首先求出f(a-bx)=-(a-bx)3,然后根据求导公式得出答案.
解答:解:∵f(x)=-x3
∴f(a-bx)=-(a-bx)3
∴f'(a-bx)=-(a-bx)3=-3(a-bx)2•(-b)=3b(a-bx)2
故选C
∴f(a-bx)=-(a-bx)3
∴f'(a-bx)=-(a-bx)3=-3(a-bx)2•(-b)=3b(a-bx)2
故选C
点评:本题考查了导数的运算,熟练掌握公式是解题的关键,属于基础题.
练习册系列答案
相关题目
设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-
)•f(
)<0,则方程f(x)=0在[-1,1]内( )
| 1 |
| 2 |
| 1 |
| 2 |
| A、可能有3个实数根 |
| B、可能有2个实数根 |
| C、有唯一的实数根 |
| D、没有实数根 |