题目内容
(1)B1D1与A1D能否垂直?请证明你的判断;
(2)当∠A1B1C1在[
| π |
| 3 |
| π |
| 2 |
分析:AC∩BD=O,分别以O1B1,O1C1,O1O所在直线为x,y,z轴,建立空间直角坐标系,(1)求出
,
,计算
•
=-2a2≠0说明不垂直;
(2)当∠A1B1C1在[
,
]上变化时,求求出
,
,
•
,然后求cos<
,
>=
,即可求异面直线AC1与A1B1所成角的取值范围.
| DB1 |
| A1D |
| D1B |
| A1D |
(2)当∠A1B1C1在[
| π |
| 3 |
| π |
| 2 |
| AC1 |
| A1B1 |
| AC1 |
| A1B1 |
| AC1 |
| A1B1 |
| b2 | ||
|
解答:解:∵菱形A1B1C1D1中,A1C1⊥B1D1于O1,
设AC∩BD=O,分别以O1B1,O1C1,O1O所在直线为x,y,z轴,
建立空间直角坐标系,设B1(a,0,0),C1(0,b,0)(a2+b2=1),
则D1(-a,0,0),A1(0,-b,0),D(-a,0,2)
(1)∵
=(2a,0,0),
=(-a,b,2),
∴
•
=-2a2≠0
∴B1D1与A1D不能垂直.
(2)∵∠A1B1C1∈[
,
],∴
≤
≤1,
∵A(0,-b,2)∴
=(0,2b,-2),
=(a,b,0),∴
•
=2b2,
|=2
,
|=
=1,
∴cos<
,
>=
∵a2+b2=1,∴设a=cosα,b=sinα,又
≤
≤1,
∴
≤tanα≤1,∴
≤α≤
∴cos<
,
>=
=
=
=
∵2≤csc2α≤4,∴cos<
,
>∈[
,
]
∴直线AC1与A1B1所成角的取值范围是[
,
].
设AC∩BD=O,分别以O1B1,O1C1,O1O所在直线为x,y,z轴,
建立空间直角坐标系,设B1(a,0,0),C1(0,b,0)(a2+b2=1),
则D1(-a,0,0),A1(0,-b,0),D(-a,0,2)
(1)∵
| DB1 |
| A1D |
∴
| D1B |
| A1D |
∴B1D1与A1D不能垂直.
(2)∵∠A1B1C1∈[
| π |
| 3 |
| π |
| 2 |
| ||
| 3 |
| b |
| a |
∵A(0,-b,2)∴
| AC1 |
| A1B1 |
| AC1 |
| A1B1 |
| |AC1 |
| b2+1 |
| |A1B1 |
| a2+b2 |
∴cos<
| AC1 |
| A1B1 |
| b2 | ||
|
∵a2+b2=1,∴设a=cosα,b=sinα,又
| ||
| 3 |
| b |
| a |
∴
| ||
| 3 |
| π |
| 6 |
| π |
| 4 |
∴cos<
| AC1 |
| A1B1 |
| b2 | ||
|
=
| sin2α | ||
|
| 1 | ||||||
|
=
| 1 | ||
|
∵2≤csc2α≤4,∴cos<
| AC1 |
| A1B1 |
| ||
| 10 |
| ||
| 6 |
∴直线AC1与A1B1所成角的取值范围是[
| ||
| 10 |
| ||
| 6 |
点评:本题考查用向量证明垂直,异面直线及其所成的角,考查学生计算能力,是中档题.
练习册系列答案
相关题目