题目内容
定义在[0,1]上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
)=
f(x),且当0≤x1<x2≤1时f(x1)≤f(x2),则f(
)等于( )
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 2010 |
A.
| B.
| C.
| D.
|
∵f(0)=0,f(x)+f(1-x)=1,令x=1得:f(1)=1,
又f(
)=
f(x),
∴当x=1时,f(
)=
f(1)=
;
令x=
,由f(
)=
f(x)得:
f(
)=
f(
)=
;
同理可求:f(
)=
f(
)=
;
f(
)=)=
f(
)=
;
f(
)=
f(
)=
①
再令x=
,由f(x)+f(1-x)=1,可求得f(
)=
,
∴f(
)+f(1-
)=1,解得f(
)=
,
令x=
,同理反复利用f(
)=
f(x),
可得f(
)=)=
f(
)=
;
f(
)=
f(
)=
;
…
f(
)=
f(
)=
②
由①②可得:,有f(
)=f(
)=
,
∵0≤x1<x2≤1时f(x1)≤f(x2),而0<
<
<
<1
所以有f(
)≥f(
)=
,
f(
)≤f(
)=
;
故f(
)=
.
故选C.
又f(
| x |
| 5 |
| 1 |
| 2 |
∴当x=1时,f(
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
令x=
| 1 |
| 5 |
| x |
| 5 |
| 1 |
| 2 |
f(
| 1 |
| 25 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 4 |
同理可求:f(
| 1 |
| 125 |
| 1 |
| 2 |
| 1 |
| 25 |
| 1 |
| 8 |
f(
| 1 |
| 625 |
| 1 |
| 2 |
| 1 |
| 125 |
| 1 |
| 16 |
f(
| 1 |
| 3125 |
| 1 |
| 2 |
| 1 |
| 625 |
| 1 |
| 32 |
再令x=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
令x=
| 1 |
| 2 |
| x |
| 5 |
| 1 |
| 2 |
可得f(
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
f(
| 1 |
| 50 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 8 |
…
f(
| 1 |
| 1250 |
| 1 |
| 2 |
| 1 |
| 250 |
| 1 |
| 32 |
由①②可得:,有f(
| 1 |
| 1250 |
| 1 |
| 3125 |
| 1 |
| 32 |
∵0≤x1<x2≤1时f(x1)≤f(x2),而0<
| 1 |
| 3125 |
| 1 |
| 2010 |
| 1 |
| 1250 |
所以有f(
| 1 |
| 2010 |
| 1 |
| 3125 |
| 1 |
| 32 |
f(
| 1 |
| 2010 |
| 1 |
| 1250 |
| 1 |
| 32 |
故f(
| 1 |
| 2010 |
| 1 |
| 32 |
故选C.
练习册系列答案
相关题目