题目内容

已知函数f(x)=sin2x+xcosx+2cos2x,xR.

(I)求函数f(x)的最小正周期和单调增区间;

(Ⅱ)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?

解析:(1)f(x)=

          =

          =sin(2x+.
∴f(x)的最小正周期T==π.
由题意得2kπ-≤2x+,k∈Z,
∴f(x)的单调增区间为[kπ-],k∈Z.
(2)方法一:
先把y=sin 2x图象上所有的点向左平移个单位长度,得到y=sin(2x+)的图象,再把所得图象上所有的点向上平移个单位年度,就得到y=sin(2x+)+的图象.
方法二:
把y=sin 2x图象上所有的点按向量a=(-)平移,就得到y=sin(2x+)+的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网