题目内容
(本小题满分12分)(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答
只以甲题计分)
甲:设数列
的前
项和为
,且
;数列
为等差数列,且![]()
(Ⅰ)求数列
的通项公式
(Ⅱ)若
,
为数列
的前![]()
项和,求![]()
乙:定义在[-1,1]上的奇函数
,已知当
时,![]()
(Ⅰ)求
在[0,1]上的最大值
(Ⅱ)若
是[0,1]上的增函数,求实数
的取值范围
甲:解:(Ⅰ)由
,…1分
, ………3分
, …………………4分
.……6分
(Ⅱ)数列
为等差数列,公差
,……8分
从而
, …………………………9分
![]()
![]()
=![]()
=
………………………………………11分
从而
.…………………………………12分
乙:乙:解:
(Ⅰ)设
……3分
…………5分![]()
当a≥ 4时,f(x )的最大值为2a-4. …………8分
(Ⅱ)因为函数f(x)在[0,1]上是增函数,
所以
…………10分
…………12分
解析
练习册系列答案
相关题目