题目内容
4.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4-m)-f(m)≥8-4m.则实数m的取值范围为( )| A. | [-2,2] | B. | [2,+∞) | C. | [0,+∞) | D. | (-∞,-2]∪[2,+∞) |
分析 令g(x)=f(x)-$\frac{1}{2}$x2,由g(-x)+g(x)=0,可得函数g(x)为奇函数.利用导数可得函数g(x)在R上是减函数,f(4-m)-f(m)≥8-4m,即g(4-m)≥g(m),可得 4-m≤m,由此解得a的范围.
解答 解:令g(x)=f(x)-$\frac{1}{2}$x2,
∵g(-x)+g(x)=f(-x)-$\frac{1}{2}$x2+f(x)-$\frac{1}{2}$x2=0,
∴函数g(x)为奇函数.
∵x∈(0,+∞)时,g′(x)=f′(x)-x<0,
故函数g(x)在(0,+∞)上是减函数,故函数g(x)在(-∞,0)上也是减函数,
由f(0)=0,可得g(x)在R上是减函数,
∴f(4-m)-f(m)=g(4-m)+$\frac{1}{2}$(4-m)2-g(m)-$\frac{1}{2}$m2=g(4-m)-g(m)+8-4m≥8-4m,
∴g(4-m)≥g(m),∴4-m≤m,解得:m≥2,
故选:B.
点评 本题主要考查函数的奇偶性、单调性的应用,体现了转化的数学思想,属于中档题.
练习册系列答案
相关题目
19.设△ABC的内角A,B,C所对的边长分别为a,b,c,且sin2A+sin2B+sin2C=$\frac{1}{2}$,面积S∈[1,2],则下列不等式一定成立的是( )
| A. | (a+b)>16$\sqrt{2}$ | B. | bc(b+c)>8 | C. | 6≤abc≤12 | D. | 12≤abc≤24 |
16.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为( )
| A. | ${C}_{4}^{3}$•${C}_{4}^{4}$ | B. | ${C}_{8}^{3}$-${C}_{4}^{3}$ | C. | 2${C}_{4}^{1}$•${C}_{4}^{2}$+${C}_{4}^{3}$ | D. | ${C}_{8}^{3}$-${C}_{4}^{3}$+1 |