题目内容
(2007•长宁区一模)已知函数f(x)=
|cos
x|(x≥0),图象的最高点从左到右依次记为P1,P3,P5,…,函数y=f(x)图象与x轴的交点从左到右依次记为P2,P4,P6,…,设Sn=
•
+(
•
)2+(
•
)3+(
•
)4+…+(
•
)n,则
=
.
| 3 |
| π |
| 2 |
| P1P2 |
| P2P3 |
| P2P3 |
| P3P4 |
| P3P4 |
| P4P5 |
| P4P5 |
| P5P6 |
| PnPn+1 |
| pn+1pn+2 |
| lim |
| n→∞ |
| Sn |
| 1+(-2)n |
| 2 |
| 3 |
| 2 |
| 3 |
分析:求出函数P1,P2,P3,P4,P5,…,的坐标,求出向量
,
,
,求出
•
,
•
推出
•
,然后求出Sn,即可求解
的值.
| P2k-1P2k |
| p2kp2k+1 |
| p2k+1p2k+2 |
| P2k-1P2k |
| p2kp2k+1 |
| p2kp2k+1 |
| p2k+1p2k+2 |
| PnPn+1 |
| pn+1pn+2 |
| lim |
| n→+∞ |
| Sn |
| 1+(-2)n |
解答:解:函数f(x)=
|cos
x|(x≥0),图象的最高点从左到右依次记为P1,P3,P5,…,
函数y=f(x)图象与x轴的交点从左到右依次记为P2,P4,P6,…,
所以P1(0,
)P2(1,0),P3(2,
),P4(3,0),P5(4,
),P6(5,0)…
∴
=(1,-
) ,
=(1,
) ,
=(1,-
),
•
=1-3=-2,
•
=1-3=-2,
∴
•
=-2, n=1,2,3,…,
Sn=-2+(-2)2+(-2)3+…+(-2)n=
,
=-
=-
=
.
故答案为:
.
| 3 |
| π |
| 2 |
函数y=f(x)图象与x轴的交点从左到右依次记为P2,P4,P6,…,
所以P1(0,
| 3 |
| 3 |
| 3 |
∴
| P2k-1P2k |
| 3 |
| p2kp2k+1 |
| 3 |
| p2k+1p2k+2 |
| 3 |
| P2k-1P2k |
| p2kp2k+1 |
| p2kp2k+1 |
| p2k+1p2k+2 |
∴
| PnPn+1 |
| pn+1pn+2 |
Sn=-2+(-2)2+(-2)3+…+(-2)n=
| 2[(-2)n-1] |
| 3 |
| lim |
| n→+∞ |
| Sn |
| 1+(-2)n |
| 2 |
| 3 |
| lim |
| n→+∞ |
| 1-(-2)n |
| 1+(-2)n |
| 2 |
| 3 |
| lim |
| n→+∞ |
| ||
|
| 2 |
| 3 |
故答案为:
| 2 |
| 3 |
点评:本题是中档题,考查函数的图象,数列的前n项和的求法,数列的极限的求解方法,考查计算能力.
练习册系列答案
相关题目