题目内容
记
为一个n位正整数,其中a1,a2,…,an都是正整数,1≤a1≤9,0≤ai≤9,(i=2,3,…,n,).若对任意的正整数j(1≤j≤m),至少存在另一个正整数k(1≤k≤m),使得aj=ak,则称这个数为“m位重复数”.根据上述定义,“四位重复数”的个数为( )
| . |
| a1a2a3…an |
| A.1994个 | B.4464个 | C.4536个 | D.9000个 |
由题意可得:四位数最小为1000,最大为9999,从1000到9999共有9000个数,
而其中4个数字均不相同的数有9×9×8×7=4536个,
所以至少有1个数字发生重复的数共有9000-4536=4464个
故选B.
而其中4个数字均不相同的数有9×9×8×7=4536个,
所以至少有1个数字发生重复的数共有9000-4536=4464个
故选B.
练习册系列答案
相关题目