搜索
题目内容
求在[0,2π]上,由
x
轴与正弦曲线
y
=sin
x
围成的图形的面积.
试题答案
相关练习册答案
解:对|sin
x
|进行从0到2π的定积分就可以求出面积.如图.
练习册系列答案
全程助学系列答案
全程提优大考卷系列答案
全程练习与评价系列答案
全程检测卷系列答案
全程备考经典一卷通系列答案
权威测试卷系列答案
轻松学习40分系列答案
轻松练测考系列答案
青海省中考密卷考前预测系列答案
启典同步指导系列答案
相关题目
已知f(x)=x
2
+bx+2,x∈R.
(1)若函数F(x)=f[f(x)]与f(x)在x∈R时有相同的值域,求b的取值范围;
(2)若方程f(x)+|x
2
-1|=2在(0,2)上有两个不同的根x
1
、x
2
,求b的取值范围,并证明
1
x
1
+
1
x
2
<4.
已知函数
f(x)=
ln(1+x)
x
.?
(1)确定y=f(x)在(0,+∞)上的单调性;?
(2)设h(x)=x•f(x)-x-ax
3
在(0,2)上有极值,求a的取值范围.
已知函数
f(x)=
px+3
x
2
+2
(其中p为常数,x∈[-2,2])为偶函数.
(1)求p的值;
(2)用定义证明函数f(x)在(0,2)上是单调减函数;
(3)如果f(1-m)<f(2m),求实数m的取值范围.
已知集合M
D
是满足下列性质的函数f(x)的全体:存在非零常数k,使得对定义域D内的任意两个不同的实数x
1
,x
2
,均有|f(x
1
)-f(x
2
)|≤k|x
1
-x
2
|成立.
(Ⅰ) 当D=R时,f(x)=x是否属于M
D
?说明理由;
(Ⅱ) 当D=[0,+∞)时,函数
f(x)=
x+1
属于M
D
,求k的取值范围;
(Ⅲ) 现有函数f(x)=sinx,是否存在函数g(x)=kx+b(k≠0),使得下列条件同时成立:
①函数g(x)∈M
D
;
②方程g(x)=0的根t也是方程f(x)=0的根,且g(f(t))=f(g(t));
③方程f(g(x))=g(f(x))在区间[0,2π)上有且仅有一解.若存在,求出满足条件的k和b;若不存在,说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案